
7 Surface integral

7.1 Surface integral of scalar �elds

In mathematical analysis, a surface integral is a generalization of multiple
integrals to integration over surfaces. It is like the double integral analog of
the line integral. One may integrate over given surface scalar �elds and vector
�elds. Let's start from the integration scalar �elds over surface.

Suppose that the function of three variables f(x, y, z) is de�ned on the
surface S in the xyz axes.

Choose whatever partition of the surface S into n subsurfaces ∆σk (1 ≤
k ≤ n), where ∆σk denotes the kth subsurface as well as its area.

On any of these subsurfaces we pick a random point Pk(ξk; ηk; ζk) ∈ ∆σk
and �nd the products

f(Pk)∆σk

Adding those products, we get the integral sum of the function f(x, y, z) over
the surface S

n∑
k=1

f(Pk)∆σk

The greatest distance between the points on the subsurface is called the
diameter of the subsurface diam ∆σk. Every subsurface has its own diameter.
In general those diameters are di�erent because we have the random partition
of the surface S. Denote the greatest diameter by λ, i.e.

λ = max
1≤k≤n

diam ∆σk

De�nition 1. If there exists the limit

lim
λ→0

n∑
k=1

f(Pk)∆σk

and this limit does not depend on the partition of the surface S and does
not depend on the choice of points Pk on the subsurfaces, then this limit is
called the surface integral with respect to area of surface and denoted∫∫

S

f(x, y, z)dσ
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By De�nition 1 ∫∫
S

f(x, y, z)dσ = lim
λ→0

n∑
k=1

f(Pk)∆σk

Sometimes the surface integral with respect to area of surface is referred
as the surface integral of the scalar �eld. The properties of the surface integral
with respect to area of surface are familiar already. While formulating the
properties, we use the term "surface integral"and "with respect to area of
surface"will be omitted.

Property 1. The surface integral of the sum (di�erence) of two functions
equals to the sum (di�erence) of surface integrals of these functions:∫∫

S

[f(x, y, z)± g(x, y, z)]dσ =

∫∫
S

f(x, y, z)dσ ±
∫∫
S

g(x, y, z)dσ

Property 2. The constant factor can be taken outside the surface integral,
i.e. if c is a constant then∫∫

S

cf(x, y, z)dσ = c

∫∫
S

f(x, y, z)dσ

Property 3. If the surface is the unit of two surfaces, S = S1 ∪ S2 and
S1 and S2 have no common interior point, then∫∫

S

f(x, y, z)dσ =

∫∫
S1

f(x, y, z)dσ +

∫∫
S2

f(x, y, z)dσ

Suppose the surface S is the graph of the function of two variables
z = z(x, y). Denote by D the projection of the surface S onto xy plane.
The surface S is called smooth if the function z(x, y) has continuous partial

derivatives
∂z

∂x
and

∂z

∂y
in D.

The following theorem gives the formula to evaluate the surface integral
with respect to area of surface.

Theorem. If the function f(x, y, z) is continuous on the smooth surface
S and D is the projection of S onto xy plane, then

∫∫
S

f(x, y, z)dσ =

∫∫
D

f(x, y, z(x, y))

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy (7.1)
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Thus, in order to evaluate a surface integral we will substitute the equa-
tion of the surface in for z in the integrand and then add on the factor square
root. After that the integral is a standard double integral and by this point
we should be able to deal with that.

If the function f(x, y, z) ≡ 1 on the surface S, then the formula∫∫
S

dσ =

∫∫
D

√
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

dxdy (7.2)

gives us the area of the surface S.

Example 1. Evaluate

∫∫
S

(x2 +y2 +z2)dσ, if S is the portion of the cone

z =
√
x2 + y2, where 0 ≤ z ≤ 1.

The plane z = 1 and the cone z =
√
x2 + y2 intersect along the circle

x2 + y2 = 1

The projection of the portion of the cone onto xy plane is the disk x2+y2 ≤ 1.

To apply the formula (7.1) we �nd

∂z

∂x
=

x√
x2 + y2

∂z

∂y
=

y√
x2 + y2

and √
1 +

(
∂z

∂x

)2

+

(
∂z

∂y

)2

=

√
1 +

x2

x2 + y2
+

y2

x2 + y2
=
√

2

By the formula (7.1)∫∫
S

(x2+y2+z2)dσ =

∫∫
D

(x2+y2+x2+y2)
√

2dxdy = 2
√

2

∫∫
D

(x2+y2)dxdy

The region of integration D in the double integral obtained is the disk of
radius 1 centered at the origin. To compute this double integral we convert
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it into polar coordinates x = ρ cosϕ, y = ρ sinϕ. Then x2 + y2 = ρ2 and
|J | = ρ.

The region of integration in polar coordinates is determined by inequali-
ties 0 ≤ ϕ ≤ 2π and 0 ≤ ρ ≤ 1. Hence,

2
√

2

∫∫
D

(x2 + y2)dxdy = 2
√

2

2π∫
0

dϕ

1∫
0

ρ2ρdρ

First we compute the inside integral

1∫
0

ρ3dρ =
1

4

and �nally the outside integral

2
√

2

2π∫
0

1

4
dϕ =

√
2

2

2π∫
0

dϕ = π
√

2

Example 2. Compute the area of the portion of paraboloid of rotation
z = x2 + y2 under the plane z = 4.

The projection D of the portion of paraboloid of rotation onto xy plane
is the disk x2 + y2 ≤ 4 of radius 2 centered at the origin.we �nd

∂z

∂x
= 2x

∂z

∂y
= 2y

and √
1 +

(
∂z

∂x

)2

+

(
∂z

∂x

)2

=
√

1 + 4x2 + 4y2

Thus, by the formula (7.2) the area of the portion of paraboloid of rotation
is ∫∫

S

dσ =

∫∫
D

√
1 + 4x2 + 4y2dxdy

The double integral obtained we convert to polar coordinates x = ρ cosϕ,
y = ρ sinϕ. Then 1 + 4x2 + 4y2 = 1 + 4ρ2 and |J | = ρ and the region D is
determined by 0 ≤ ϕ ≤ 2π and 0 ≤ ρ ≤ 2. Therefore,∫∫

D

√
1 + 4x2 + 4y2dxdy =

2π∫
0

dϕ

2∫
0

√
1 + 4ρ2ρdρ
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To �nd the inside integral we use the equality of di�erentials d(1 + 4ρ2) =
8ρdρ, which gives

2∫
0

√
1 + 4ρ2ρdρ =

1

8

2∫
0

√
1 + 4ρ28ρdρ

=
1

8

2∫
0

(1 + 4ρ2)
1
2d(1 + 4ρ2) =

1

8

(1 + 4ρ2)
3
2

3

2

∣∣∣∣2
0

=
1

12
(1 + 4ρ2)

√
1 + 4ρ2

∣∣∣∣2
0

=
17
√

17− 1

12

The outside integral, i.e. the area to be computed is

17
√

17− 1

12

2π∫
0

dϕ =
17
√

17− 1

12
· 2π =

π(17
√

17− 1)
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7.2 Surface integral with respect to coordinates

Suppose that S is a surface in the space and let Z(x, y, z) be a function
de�ned at all points of S. Choose a whatever partition of the surface S into n
nonoverlapping subsurfaces ∆σk (1 ≤ k ≤ n). In any of these subsurfaces we
pick a random point Pk(ξk; ηk; ζk) and compute the value of function Z(Pk).
Let us denote by ∆sk the projection of ∆σk onto xy plane, where ∆sk denotes
also the area of this projection. Next we �nd the products Z(Pk)∆sk and
adding these products, we get the sum

n∑
k=1

Z(Pk)∆sk

which is called the integral sum of the function Z(x, y, z) over the projection
of surface S onto xy plane. Let diam ∆sk be the diameter of ∆sk. We have
a random partition of the surface S, hence the diameters of these projec-
tions are di�erent. Denote by λ the greatest diameter of the projections of
subsurfaces ∆σk, i.e.

λ = max
1≤k≤n

diam ∆sk

De�nition 1. If there exists the limit

lim
λ→0

n∑
k=1

Z(Pk)∆sk
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and this limit does not depend on the partition of the surface S and it is
independent on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function Z(x, y, z) over the projection of the

surface onto xy plane and denoted∫∫
S

Z(x, y, z)dxdy

Thus, by the de�nition∫∫
S

Z(x, y, z)dxdy = lim
λ→0

n∑
k=1

Z(Pk)∆sk (7.3)

Second, suppose that the function of three variables Y (x, y, z) is de�ned at all
points of the surface S and that ∆s′k is the projection of ∆σk onto xz plane.
Choosing again a random point Pk ∈ ∆σk, we �nd the products Y (Pk)∆s

′
k.

The sum of these products

n∑
k=1

Y (Pk)∆s
′
k

is called the integral sum of the function Y (x, y, z) over the projection of S
onto xz plane.

De�nition 2. If there exists the limit

lim
λ→0

n∑
k=1

Y (Pk)∆s
′
k

and this limit does not depend on the partition of the surface S and it is
independent on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function Y (x, y, z) over the projection of the

surface onto xz plane and denoted∫∫
S

Y (x, y, z)dxdz

By De�nition 2 ∫∫
S

Y (x, y, z)dxdz = lim
λ→0

n∑
k=1

Y (Pk)∆s
′
k (7.4)
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Third, suppose that the function of three variables X(x, y, z) is de�ned
at all points of the surface S and ∆s′′k is the projection of ∆σk onto yz plane.
We choose again random points Pk ∈ ∆σk and �nd the products X(Pk)∆s

′′
k.

The sum
n∑
k=1

X(Pk)∆s
′′
k

is called the integral sum of function X(x, y, z) over the projection of S onto
yz plane.

De�nition 3. If there exists the limit

lim
λ→0

n∑
k=1

X(Pk)∆s
′′
k

and this limit does not depend on the partition of the surface S and does
not depend on the choice of points Pk in the subsurfaces, then this limit is
called the surface integral of the function X(x, y, z) over the projection of the

surface onto yz plane and denoted∫∫
S

X(x, y, z)dydz

By De�nition 3 ∫∫
S

X(x, y, z)dydz = lim
λ→0

n∑
k=1

X(Pk)∆s
′′
k (7.5)

In general we de�ne the surface integral over the projection of the vector
function −→

F (x, y, z) = (X(x, y, z);Y (x, y, z);Z(x, y, z))

as ∫∫
S

X(x, y, z)dydz + Y (x, y, z)dxdz + Z(x, y, z)dxdy (7.6)

Remark. Sometimes the surface integral over the projection is also re-
ferred as the surface integral of the vector �eld.

7.3 Evaluation of surface integral over the projection

Consider the evaluation of the surface integral over the projection onto
xy plane ∫∫

S

Z(x, y, z)dxdy
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Suppose that the smooth surface S is a graph of the one-valued function of
two variables z = f(x, y). Since the function is one-valued, any line parallel
to z axis cuts this surface exactly at one point.

De�nition 1. A smooth surface S is said to be two-sided, if a normal
vector is moved along any closed curve on the surface so that upon return to
the starting point the direction of the normal is the same as it was originally.
In the opposite case the surface is called one-sided.

A well known example of the one-sided surface is the Möbius band. It
consists of a strip of paper with ends joined together to form a loop, but
with one end given a half twist before the ends are joined.

For a two-sided surface we di�er the upper and the lower side of the
surface. The upper side of the surface is the side, where the normal vector
forms an acute angle with z axis. The lower side of the surface is the side,
where the normal vector forms an obtuse angle with z axis.

The evaluation of the surface integral over the projection depends on
the side of the surface over which we integrate. If the function Z(x, y, z) is
continuous at any point of the smooth surface z = f(x, y), then the surface
integral over the projection onto xy plane is computed by the formula.∫∫

S

Z(x, y, z)dxdy = ±
∫∫
D

Z(x, y, f(x, y))dxdy (7.7)

On the right side of this formula is a standard double integral, where D
denotes the projection of the surface S onto xy plane. Using this formula,
we choose the sign "+", if we integrate over the upper side of surface and we
choose the sign "−", if we integrate over the lower side of the surface. So, for
any problem there has to be said over which side of the surface we need to
integrate.

If the function Y (x, y, z) is continuous at any point of the smooth surface
y = g(x, z), then the surface integral over the projection onto xz plane is
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computed by the formula∫∫
S

Y (x, y, z)dxdz = ±
∫∫
D′

Y (x, g(x, z), z)dxdz (7.8)

In this formula D′ denotes the projection of S onto xz plane and the choice
of the sign + or − depends on over which side of the surface the integration
is carried out (i.e. does the normal of the surface forms with y axis acute or
obtuse angle).

If the function X(x, y, z) is continuous at any point of the smooth surface
x = h(y, z), then the surface integral over the projection onto yz plane is
computed by the formula∫∫

S

X(x, y, z)dydz = ±
∫∫
D′′

X(h(y, z), y, z)dydz (7.9)

Here D′′ denotes the projection of S onto yz plane and the choice of the sign
+ or − depends on over which side of the surface the integration is carried
out (i.e. does the normal of the surface forms with x axis acute or obtuse
angle).

Example. Compute the surface integral∫∫
S

z2dxdy

where S is the upper side of the portion of cone z =
√
x2 + y2 between the

planes z = 0 and z = 1.
This portion of cone is sketched in Figure 8.8. The projection D onto xy

plane of this portion of cone is the disk x2 + y2 ≤ 1. Hence by (7.7)∫∫
σ

z2dxdy =

∫∫
D

(x2 + y2)dxdy

Since the region of integration is the disk, we convert the double integral into
polar coordinates. For this disk 0 ≤ ϕ ≤ 2π and 0 ≤ ρ ≤ 1, thus,∫∫

D

(x2 + y2)dxdy =

2π∫
0

dϕ

1∫
0

ρ2 · ρdρ

Now we compute
1∫

0

ρ3dρ =
ρ4

4

∣∣∣∣1
0

=
1

4
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and
2π∫
0

1

4
dϕ =

1

4
· 2π =

π

2
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