8 Series

8.1 Series. Sum of series

The series is an infinite sum
u1+u2—|—...+uk—|—...:Zuk (8.1)
k=1

The addends in this infinite sum are called the terms of the series and wuy
is called the general term. If we assign to k some natural number, we get the
related term of the series. In (8.1) the & is called the index of summation and
note that the letter we use to represent the index can be any integer variable
1, 7, I, m, n, .... The first index is 1 for convenience, actually it can be any
integer. We can write (8.1) as

e 00 e
E U = E U1 = E Uk—1 = ...
k=1 k=0 k=2

A number series is the series, whose terms are numbers. In our course we
consider the series of real numbers. A functional series is the series, whose
terms are functions of the variable z, i.e. up = ux(x), k=1, 2, ...

A geometric series is the series

a+aqg+ag® + ... +ad"+ ... :Zaqk (8.2)
k=0

where each successive term is produced by multiplying the previous term by
a constant number ¢ (called the common ratio in this context).
The harmonic series is the series

(8.3)

| =

1 1 1 >
1+=—4+—-—+ ... += :E
+2+3+ +k+ 2

The sum of the first n terms

n
Sn: E U
k=1

is called the nth partial sum of the series. The partial sums

51:u1

ngul + Ug



define the sequence of partial sums
S1, So, .oy Sy, .. (8.4)

Definition. A series (8.1) is said to converge or to be convergent when
the sequence (8.4) of partial sums has a finite limit. If the limit of (8.4) is
infinite or does not exist, the series is said to diverge or to be divergent. When
the limit of partial sums

lim S, =S

n—oo

exists, it is called the sum of the series and one writes

S = iuk
k=1

It is important not to get sequences and series confused! A sequence is a
list of numbers written in a specific order while an infinite series is a limit of
a sequence and hence, if it exists will be a single value.

Example 1. The sum of the first n terms, i.e. the n — 1st partial sum of
the geometric series is

n—1 a<1 qn)
_ k _ —
Snfl - Z aq = 1— q
k=0
If |g| < 1, then
lim ¢" =0
n—oo
thus,
1—q" n
lim S,_; = lim o q)zlim——hm a __¢
n—00 n—o0 —q nsool—q n—oool—gq 1—g¢q

If ¢ > 1, then



therefore,
lim S,,—1 = o

n—oo
and the geometric series is divergent If ¢ < —1, then lim ¢" does not exist
n—oo
and hence, lim S,,_; does not exist and the geometric series is divergent. If
n—oo

q = 1, then the n — 1st partial sum

n—1 n—1
S, = ag® = a = na
k=0 k=0
and the limit lim S, ; = lim = na = oo. If ¢ = —1, then the Sy = a,
n—oo n—oo

Si=a—a=0,5%=a—a+a=a,S3=a—a+a—a=0,...We obtain
the sequence of partial sums

a, 07 a, Oa

which has no limit. Therefore, for ¢ = +1 the geometric series is divergent.
Conclusion. If |¢| < 1, then the geometric series (8.2) converges and if
|g| > 1 then the geometric series diverges.
Example 2. To find the nth partial sum S,, of the series

> 1
;;uk+n

we use the partial fractions decomposition
1 1 1

kk+1) k& k+1

We obtain
&ﬁ:” LN S SIS S
~k(k+1) 1.2 2.3 3-4 n(n+1)
SIPJR EE P E PR E R S -
2 2 3 3 4 n n+1 n+1

The limit of this sequence, i.e. the sum of this series

1
S = lim (1 — ) =1
n—o0o n/+—1
If we ignore the first term the remaining terms will also be a series that
will start at k& = 2 instead of £ = 1 So, we can rewrite the original series

(8.1) as follows,
S+ 3
k=1 k=2
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We say that we’ve stripped out the first term. We could have stripped out

the first two terms
o0 o0
Zuk = U +u2+2uk
k=1 k=3

and first any number of terms respectively,

Zuk:u1+u2+...+um+ Z uk:Zuk—I— Z Up
k=1

k=1 k=m+1 k=m+1

The first sum on the right side of this equality is the mth partial

m

k=1

sum of series (8.1). This is a finite sum, which is always finite. Assuming that
n > m, we can write the nth partial sum

n m n
D uwe=D ut > uk
k=1 k=1

k=m-+1

or

Sn = Sm + Snfm

where

Sn—m: zn: Uk

k=m+1
Now, if S,, has the finite limit as n — oo, then S,,_,, must have also the finite
limit. Conversely, if S,,_,, has the finite limit as n — oo, then adding the
finite sum .S, leaves the limit finite.

Similarly, S,, has the infinite limit or does not have the limit if and only
if S,,_,, has also the infinite limit or has no limit.

Conclusion. Stripping out the finite number of terms from the begin-
ning of the series leaves the convergent series convergent and divergent series
divergent. As well, adding the finite number of terms to the beginning of the
series does not make the convergent series divergent and does not make the
divergent series convergent.

8.2 Necessary condition for convergence of series

Suppose that the series (8.1) converges to the sum S, i.e.

lim S, =5

n—oo



The nth partial sum can be written

n n—1
S, = Zuk = Zuk—irun
k=1 k=1
or
Sn = Sn,1 + Un
hence,
Uy = Sn — Sn—l

The convergence of the series gives, since if n — oo then n — 1 — oo,

lim 4, = lim S, — lim S,,_ 1 =5—-5=0
n—oo n—o0 n—oo
We have proved an essential theorem, so called necessary condition for
the convergence of the series.
Theorem 1. If the series (8.1) converges, then the limit of the general

term
lim u, =0 (8.5)

n—oo

This theorem gives us a requirement for convergence but not a guarantee

of convergence. In other words, the converse is not true. If lim u, = 0 the
n—oQ

series may actually diverge. For example, the limit of the general term of the
harmonic series (8.3)

=

but the harmonic series is divergent. It will be a couple of subsections before
we can prove this, so at this point the reader has just to believe this and
know that it’s possible to prove the divergence.

In order for a series to converge the series terms must go to zero in the
limit. If the series terms do not go to zero in the limit then there is no way
the series can converge since this would contradict the theorem, i.e. there
holds.

Conclusion (the divergence test). If T}ingo un # 0 then the series (8.1)

diverges.
For example the series

o
d 1
k=1
is divergent because the limit of the constant term is that constant,

lim1=1+#0

k—o0



8.3 Convergence tests of positive series

In Mathematical analysis there exist a lot of tests that give us the pos-
sibility to decide whether the series converges or diverges. In this subsection
we are going to consider the positive series, i.e. the series (8.1), whose all
terms are positive:

u, >0, k=12, ...

8.3.1 Comparison test

The nth partial sum of the series (8.1) is
Sy, = Sp_1+u,
Since for any index n wu, > 0, then
Sp > Sp1

that means, the sequence of partial sums of the positive series is monotonical-
ly increasing. We had the theorem in Mathematical analysis I, which stated
that any bounded monotonically increasing sequence has the finite limit. So,
if we have succeeded to prove that the sequence of the partial sums of the
positive series is bounded, we have proved the existence of the finite limit of
the sequence of partial sums, that is, we have proved the convergence of the
positive series.
The sequence
S1, So, ooy Sh, .

has the finite limit means by the definition of the limit that for any ¢ > 0
there exists the index N > 0 such that for alln > N

|S, — S| <e
This inequality is identical to the inequalities
—e< S, —S<e¢

or
S—e<S,<S+e

which means the sequence is bounded. We have proved the following theorem.
Theorem 1. The positive series (8.1) is convergent if and only if the
sequence of its partial sums is bounded.



Suppose that we have another positive series

> (8.6)

and we know whether it converges or diverges. For instance we know that the
geometric series (8.2) converges if |¢| < 1 and diverges if |¢| > 1. We know
that the harmonic series is divergent and we know that

> 1
; k(k+1)

is convergent.
Theorem 2 (the comparison test). 1) If for any k =1, 2, 3, ...

u < v
then the convergence of the series (8.6) yields the convergence of the series
(8.1).
2) Ifforany k=1, 2, 3, ...

Uup > Vg

then the divergence of the series (8.6) yields the divergence of the series (8.1).
Example 1. Prove that the series

1 1 1 =1
l+-4+—+ ... +— :E —
+4+9+ +k2+ k:lk’z

converges.
We know that the series

k=1 k=2
converges. For any k = 2, 3, ... it is obvious that
1 - 1
k2 (k—1k

and by Theorem 2 the series



converges. Adding the term 1 to the beginning of the series preserves the
convergence.
Example 2. Prove that the series

LI S i !
ATAT AT 2 7
diverges.
For any k > 1 there holds the inequality vk < k hence,

1 - 1

Vi k

The harmonic series (8.3) diverges thus, by Theorem 2 the series given di-
verges also.

8.3.2 D’Alembert’s test

Sometimes the D’ Alembert’s test is referred as the ratio test. We consider
again the positive series (8.1).
Theorem (D’Alembert’s test). Suppose there exists the limit

. Uk+1
lim =D
k—o0 Uk

1) If D < 1, then the series (8.1) converges.
2) If D > 1, then series (8.1) diverges.

3) If D = 1, then this test us inconclusive, because there exist both
convergent and divergent series that satisfy this case.
=1
Example 1. Does the series Z 0 converge or diverge?
- 1 1
The ratio of two consecutive terms wug, 1 = Gt 1)l and u, = 0 is
1
w, L (k+DE k+1
k!
and the limit of this ratio
1
D= lim —— =

Since D = 0, this series converges by the D’Alembert’s test.

8
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Example 2. Does the series Z % converge or diverge?
Compute the limit =
1
D=t et — iy Sy
L2

Since D = 1, the D’Alembert’s test is inconclusive, but we know that by

the comparison test that this series converges.
[e.e]

1
Example 3. Does the series Z z converge or diverge?

k=1
For the harmonic series we have

1
Dzlimukﬂ:limm: =
k

so, the harmonic series cannot be handled by the D’Alembert’s test, but we
know that the series diverges.

8.3.3 Cauchy test

Cauchy test is also known as root test of convergence of a series. Let us
consider the positive series (8.1) again.
Theorem (Cauchy test). Suppose there exists the limit

lim \k/uk =C

k—o0

1) If C' < 1, then the series (8.1) converges.
2) If C' > 1, then series (8.1) diverges.
3) If C' =1, then this test us inconclusive.
Example 1. Determine if the series
2o
k=1

is convergent or divergent?
5/ 1.2
and evaluate the limit

To use the Cauchy test we find ¥/u;, =

ka

1
k—o0 k—oo 2 2 k—oo

9



0

Since we have the indeterminate form oo”, we apply the LL’Hospital’s rule

9
lim Ink* = lim = Ink

k—ro0 k—o0
L (2Ink) 2
R A=

and

1 1
C==-e"==-<1
2¢ 73

So, by the Cauchy test the series is convergent.
Example 2. Determine if the series

(o) 1k2
1 _
> (1)

is convergent or divergent?
The kth root of the general term is

s o)

1\
C = lim ¥/u, = lim (1+—) =e>1
k—o0 k—o0 k

Hence, by the Cauchy test the series is divergent.

and the limit

8.3.4 Integral test

Let us consider the a positive series (8.1) once more.

Theorem 5 (Integral test). Suppose u(z) is a continuous positive dec-
reasing on interval [1;00) function, whose values for the integer arguments

are the terms of series (8.1), i.e. u(k) = uy. Then

1) if the improper integral (8.1) /u(m)dm is convergent so is the series
1

(8.1);

1) if the improper integral (8.1) /u(m)dm is divergent so is the series

1

(8.1).



Example 4. Prove that the harmonic series

00
k=1

El

diverges.

1
To apply the integral test we define the decreasing function u(x) = —,

x
whose values for the integer arguments x = k are

1
u = u(k) = %

The improper integral is divergent because

N

= lim InN =0
1 N—oo

N
dx _ dx ,
— = lim [ — = lim In|z|
x N—oo x N—oo
1

1

By the Integral test the harmonic series is divergent.

8.4 Alternating series. Leibnitz’s test.

The last tests that we looked at for series convergence have required that
all the terms in the series be positive. The test that we are going to look into
in this subsection will be a test for alternating series. An alternating series
is any series

U — Uy +UF— Uy + ...= Z(—l)kﬂuk (87)
k=1
or .
—uy Fuy —uz Fug— ..o= Y (—1)Fuy
k=1
where u, >0, k=1, 2, ...
The second alternating series we can write
D (D= =) (=1
k=1 k=1

therefore, it’s enough to look at for convergence of the series (8.7).
Theorem 1. (Leibnitz’s test) If
1) up > ugs1, k=1, 2, ... and

2) klim u = 0, then the alternating series (8.7) converges.
—00

11



Example. For the alternating harmonic series
o

11 1
P Y S
531" ;( T

both of the assumptions of the theorem hold because

1>1> >1> 1 >
T kT k+1
and
lim — =
pm g =0

Hence, this series is convergent.

8.5 Absolute and conditional convergence

In this subsection we assume that the terms of the series

> ug (8.8)

can have whatever signs.
Definition 1. The series (8.8) is called absolutely convergent if the series

Jun] + Jua| + Jug 4. = D fu
k=1

is convergent.

Theorem 1. If the series (8.8) is absolutely convergent then it is also
convergent.

Proof. The definition of the absolute value

—uy, if up <0

gives us that
0 < up + |ug| < 2fuyl

Since we are assuming that
o

>l

k=1

12



is convergent then
o oo
D 2u =2l
k=1 k=1

is also convergent because 2 times finite value will still be finite. The compa-

rison test gives us that
oo

D (g + )

k=1

is also a convergent series. Now the series (8.8)

= k=1 k=1 k=1

is the difference of two convergent series, i.e. convergent.

By Theorem 1 series that are absolutely convergent are guaranteed to be
convergent. However, series that are convergent may or may not be absolutely
convergent.

Definition 2. The series (8.8) which is convergent but not absolutely
convergent is called conditionally convergent.

Example 1. Alternating harmonic series

- k1 1
Z(—l) z

k=1

is convergent by Leibnitz’s test, but the series

g =3

is the harmonic series. By Integral test the harmonic series diverges hence,
alternating harmonic series is a conditionally convergent series.

e

2

1

o]
k=

o . k
Example 2. Determine if the series Z 81;12

k=1

is absolutely convergent,

conditionally convergent or divergent.

Notice that this is not an alternating series. Since |sink| < 1 for any
integer k, then
1

S

sin k

k?

13



(o]
1
We know that the series Z e converges hence, by Comparison test the
k=1
series -
sin k
> |
k=1
sin k

o
converges, i.e. the series Z is absolutely convergent and Theorem 1

k=1
guarantees its convergence.

While the convergence of the positive series takes place because of the
terms are decreasing with the sufficient speed, then the conditional conver-
gence happens because the terms reduce each other.

k2

8.6 Power series

A series of functions is the series, whose terms are the functions of some
variable, suppose x

Z uy () (8.9)
k=1

If we assign to the variable x a certain value zy that is in domains of all
uy, and substitute it into all these functions, we have the numerical values
ug(xg), i.e for = xy the series (8.9) is a number series.

Example. Let’s examine the series of functions

1+x+x2+...+xk+...:Zxk (8.10)
k=0

If the variable x has the value z =

2.5
k=0

, we get the geometric series

N | —
DrlH I

S .o 1
which is convergent, because the common ratio is —.

Assigning to the variable = the value x = 1, we get the number series

1+1+1+...
which diverges by Divergence test. Assigning to the variable x the value
xr = —1, we get the divergent number series
1—14+1—..  +(=1)F+...

14



Assigning to the variable z the some value zy > 1, we obtain the number
series with general term

up () = ok
which diverges by Divergence test because

lim zf = oo
k—o00

Assigning to the variable x the some value g < —1, we obtain the number
series which diverges by Divergence test because the general term has no
limit.

It has turned out that for some values of the variable x the series of
functions converges and for other values it diverges.

The partial sums of the series of functions (8.9)

Sul) = 3 ()

are also functions of the variable x and define a sequence of functions
Sl(l’), SQ((E), Cey Sn($), (811)

Definition. The set X of the values of argument x for which the sequence
of partial sums (8.11) is convergent, i.e. there exists the (finite) limit

S(x) = lim S,(x) (8.12)

is called the region of convergence of the series of functions (8.9).
It is said that S(x) is the sum of the series (8.9) and one writes

S(z) =Y w(x)

Power series is a series of power functions

Z cra® (8.13)
k=0

or in general
> ez —a)t (8.14)
k=0

where the numbers ¢; are called the coefficients of the series.

15



The examination of the properties of those series is very similar therefore,
we restrict ourselves with series (8.13).
Example 1. The series

l+x+22+ ... +:1:k+ :Z$k
k=0

is a geometric series for any value of x. This series converges if |z| < 1. Hence,
the region of convergence of this series is open interval X = (—1;1) and the
sum of this series in this interval is

oo 1

k
E 2t =T (8.15)
k=0

It turns out that the regions of convergence of power series have such a simple
structure.

Theorem 1 (Abel’s theorem). If the power series (8.13) converges
for some value of xy, then this series converges absolutely for any value of
|z| < |xo).

Conversely, if the power series (8.13) diverges for some value of ¢, then
this series diverges for any value of |z| > |x|.

According to Abel’s theorem there exists a real number R such that for
|z| < R the series (8.13) converges and for |z| > R diverges. This real
number R is called the radius of convergence of the series (8.13) and the
interval (—R; R) the interval of convergence of this series.

Remark. At the endpoints x = R and © = — R of the interval of conver-
gence the series (8.13) may converge and may diverge. Therefore, to comple-
tely identify the interval of convergence all that we have to do is determine
if the power series will converge for x+ = R or x = —R. If the power series
converges for one or both of these values then we’ll need to include those in
the interval of convergence.

There are a lot of possibilities to determine the radius of convergence of
power series (8.13). One of these possibilities is to use the formula.

Ck

Ck+1

R = lim

k—o00

(8.16)

Example. Find the intervals of convergence of power series
(o)
>
k=1

16



and

The radius of convergence is 1 for all of three series. The coefficient of the
first series are ¢, = 1 hence,

R:hmlzl

k—oo 1

1
The coefficients of the second series are ¢, = z and

1
The coefficients of the third series are ¢, = yE and
k+1)2
R = lim —< +1)

=1
k—o0 k’2

thus, all three series are convergent if —1 < x < 1 and diverges if |z| > 1.
Determine if these series will converge for x =1 or x = —1.

The general term of the first series at the right endpoint is 1¥ = 1, whose
limit 1 # 0 hence, the series diverges. At the left endpoint the general term
is (—1)*, which has no limit as k — oo, i.e. the series diverges again and the
interval of convergence of the first series is (—1;1)

1
The general term of the second series at the right endpoint is z hence, the
second series is at the right endpoint the harmonic series, which is divergent.

(=DF

left endpoint the alternating harmonic series, which converges by Leibnitz’s
test. Thus, the interval of convergence of the second series is [—1;1).

At the left endpoint the general term is , i.e. the second series is at the

The general term of the second series at the right endpoint is 7= and

(=D*

1
at the left endpoint >—. The absolute value of both of these is =k By

Example 1 of subsection 8.3 the series
=1
>
k=1

17




converges thus, the third series converges at both endpoints and the interval
of convergence is [—1; 1].

Inside the interval of convergence of power series it’s possible to prove.

Conclusion 1. If the radius of convergence of the power series (8.13) is
R, then the sum of this series is continuous on any interval [a;b] C (—R; R).

Conclusion 2. If the radius of convergence of the power series (8.13) is
R, then this series can be integrated term by term on any interval [a;b] C
(—R; R).

Conclusion 3. If the radius of convergence of the power series (8.13)
is R, then this series can be differentiated term by term on any interval
[a;b] C (—R; R).

Now, using the sum of the geometric series (8.15) and conclusions 2 and
3, we can find the power series expansions for many functions.

Example 1. Multiplying both sides of (8.15) by = gives

00 00
— . § :$k3: § $k+1

k=0 k=0

and the radius of convergence is still 1. It’s easy to verify that

(12)/: <1—1:c>2

and using the term by term differentiation we get the power series expansion
of this derivative

1-_.x 2{: k+1 2{: k‘+*1
k=0 k=0

and the radius of convergence of the series obtained is 1 again.
Example 2. If we substitute in (8.15) the variable z by —z?, we get

1—1—1952 =T — ) =2 (e
k=0 k=0

and this series converges if | — z?| < 1, which is equivalent to |z| < 1.

Since
X

. / dx
arctanz =
1+ a2

0

, we obtain the power series of arc tangent function integrating the last series
term by term in limits from 0 to z provided |z| < 1.

18



00 z 00 k
1.2 +1

_ k[ 2k 1V
arctanx—Z( 1) /x dx %( 1) ST

k=0 0

and the radius of convergence is 1 hence, the interval of convergence is (—1; 1).
At the left endpoint of the interval of convergence we get the series

i(_l)k(_l)%—kl _ o (_1)k
e 2k +1 2k + 1

and at the right endpoint

i (=1)*

— 2k+1
Both series obtained are the alternating series, which converge by the Leib-
nitz’s test and therefore, the interval of convergence of the series obtained is
[—1;1].

So, it may happen that the series obtained as the result of term by term

integration converges at one or both of the endpoints, despite of the initial
series diverges at the endpoints.

8.7 Taylor’s and Maclaurin’s series

Suppose that the function f(z) is differentiable infinitely many times in
the neighborhood of a. If the coefficients ¢ of the power series

Z cr(x —a)f
k=0
are computed by the formula

f¥(a)
k!
then these coefficients are called Taylor’s coefficients and the series

£k (g
Zf ( )(x—a)k (8.18)

(8.17)

Cl —

is called Taylor’s series of the function f(z) in the neighborhood of a or
Taylor’s series of the function f(x) in powers # — a. The nth partial sum of
this series is the Taylor’s polynomial

") (g
Pia) = S T —ay

19



By Taylor’s formula the function f(x) can be represented as
f(z) = Fu(z) + Rn(z)

that is the sum of the Taylor’s polynomial and the remainder.
We know that Lagrange form of the remainder of the Taylor’s formula is

_ (z—a)"™! (n+1)
R (v) = mf (a+O(r —a))
where 0 < © < 1
If
lim R,(z) =0
then

lim Py(z) = (x)

which means that the sequence of partial sums of Taylor’s series converges
to the function f(x).

Therefore, the series (8.20) represents the function f(x) if and only if the
limit of the remainder equals to 0. If nh_)rg@ R, (x) # 0, then the Taylor’s series

of the function f(x) may still converge but it does not represent the function

f().

Taylor’s series in the neighborhood of a = 0, i.e. Taylor’s series in powers

T
> f<’2'(0)xk (8.19)
k=0 ’

is called Maclaurin’s series.

8.8 Maclaurin’s series of functions e”, sinx and coszx

In Mathematical analysis [ we have proved that Maclaurin’s formula of
nth degree of the exponential function e” is

xr __ ]' 1 2 ]' 3 ]' n
e —1+ﬁx+§x +§x —i—...—l—mx + R, (x)
and that the limit of the remainder

n+1

. Y X or
am Bo(2) = lim e =0

20



for each z € R and for 0 < 6 < 1. Consequently, Maclaurin’s series represents
the function e” for every real z, i.e.

k LEQ 1‘3

X __ . T —
e_zﬁ;ym+§+§+m
k=0

Also it has been proved that Maclaurin’s formula of 2n + 1st degree of
the sine function sin x is

‘ P . 2+l
Slnx:ﬂ—g—l—g——l—(—l) W+R2n+1($)
whose remainder is
2n-+2
Ropi1(z) = TR sin (©x + (n+ 1)7)

Since for every x € R and for 0 < 0 < 1
lim R2n+1(l') =0
n—oo

Maclaurin’s series represents the function sinx for every real x:

o0
p2k+1 O
T— o+ —...

A &y A YR TR

k=0

As well it has been proved that Maclaurin’s formula of 2nth degree of the
cosine function cos x is

22 gt . 2
Cosx:1—§+z—...+(—1) @—W—i-Rzn(i’f)
and the remainder
x2n+1

Ron(x) = I oS (@x + (2n + 1)Z>

(2n+1 2

Again, for every x € R and for 0 < 6 < 1

n—oo

hence, Maclaurin’s series represents the function cosx for every real x:




8.9 Fourier series of 27w-periodic functions

For an infinitely many times differentiable function f(x) Maclaurin’s series
expansion is

> £(k)
kz_o / k'(O)xk (8.20)

Here we have expanded the function f(z) with respect to system of power
fuctions

{1, z,2°%, ...}

Another system of functions is the system of trigonometric functions
{1; sinz; cosx; sin2x; cos2x; ...; sinkx; coskx; ...} (8.21)
The series with respect to system of trigonometric functions

o
a
fla)==+ Z(ak cos kx + by sin kx) (8.22)
2
k=1
is called trigonometric series. We shall see later that taking the constant
a . .
term as — rather that ap 1s a convenience that enables us to make aq fit a
general result.
Suppose the function f(x) is 2m-periodic i.e. for each x,z + 27 € X

f(x+2m) = f(x)

which means that the values of the function are repeated at interval 27 in
its domain. For this 2m-periodic function we find coefficients of trigonometric
series (8.22)

1 s
ag = ;/f(x)dx (8.23)
1 ™
ap = —/f(x) coskxdr k=12, ... (8.24)
m
and i
1
by = —/f(a:) sinkzde k=1, 2, ... (8.25)
m

The coefficients ag, a and by, defined by (8.23), (8.24) and (8.25), res-
pectively, are called the Fourier coefficients of the function f(z) and the
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trigonometric series with these coefficients is called the Fourier series of the
function f(x).

We have got the formulas to compute the Fourier coefficients. But if we
compute the Fourier coefficients by the formulas (8.23), (8.24) and (8.25) and
write the Fourier series expansion

Qo

5 + Z(ak cos kx + by, sin kx)

k=1

we don’t know whether this expansion converges and if it converges, converges
it to f(x) or to some other value. For now we are just saying that associated
with the function f(z) on [—m;7] is a certain series called Fourier series.
Therefore we write

f(z) ~ % + Z ay, cos kx + by, sin kx (8.26)
k=1

The equality sign = can be written instead of ~ only if we have proved the
convergence of the Fourier series to the function f(z).

Example 1. Find the Fourier coefficients and Fourier series of the square-
wave function defined by

So f(x) is periodic with period 27. Using the formulas (8.23), (8.24) and

(8.25), we find the Fourier coefficients

=0

1 1
ap = — /COS]{JZL‘de‘ = —sinkx
k 0

™ ™
0

and

T 1 0 if kis even

1 1 .
bk——/smkxdx——k—coskx __H((_l) —1)—{ 2 if ks odd
0

™ ™

0
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Thus, a; = 0 and and by, = 0 for every £ = 1, 2, .... Fourier series of
square-wave function is

1 2. 2 . 2 .
f(x) ~ =4 —sinx + —sin3x + —sinbxr + . ..
2 0w 3T om

or

1« 2
flz) ~ 3 + Z 2kt )r sin(2k + 1)z
k=0

The following theorem gives a sufficient condition for convergence of the
Fourier series.

Theorem (Dirichlet’s theorem). If f(z) is a bounded 27-periodic
function which in any one period has at most a finite number of local maxima
and minima and a finite number of points of jump discontinuity, then the
Fourier series of f(z) converges to f(z) at all points where f(x) is continuous
and converges to the average of the right- and left-hand limits of f(x) at each
point where f(z) is discontinuous.

The square-wave function has on half-open interval (—m;7| one local
maximum equal to 1 and one local minimum equal to 0 and two points
of jump discontinuity 0 an 7. Hence, at any point in the open intervals
(—m;0) and (0;7) Fourier series converges to f(x). The left-hand limit at
0is f(0—) = $li>r(r)1 f(z) = 0 and the right-hand limit at 0 is f(04) =

1 1
lirél+f($) = 1 and the average of these one-sided limits is =35 The
T—
left-hand limit at 7 is f(7—) = lim f(x) =1 and the right-hand limit at =

T—rmT—
1+0 1

is f(m+) = hm+ f(z) = 0 and the average of one-sided limits is 5
T—T
Thus, at the points of discontinuity the Fourier series of the square-wave
1
function converges to 5 Since sin((2k + 1) - 0) = 0 and sin((2k + 1)7) =0

for any integer k, then the direct computation also gives
1 < 2 1
= ——  sin((2k + 1)0) = =
2+kzzo(2k+1)7rsm<< 00 =3

and

1 < 2 , 1
5 + z:: msm((% + 1)m) = 5

k=0

24



