AI in Healthcare

Logistic regression

Logistic Regression Model

Logistic Regression Model

We want $0 \le h_{\theta}(x) \le 1$

$$h_{\theta}(x) = g(\theta^T x)$$

Sigmoid function or logistic function

$$g(z) = \frac{1}{1 + e^{-z}}$$

Therefore

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

In case of one feature:

$$h_{\theta}(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x)}}$$

Hypothesis output

- ► The output of hypothesis $h_{\theta}(x)$ gives the probability that y=1
- $P(y = 0|x; \theta) + P(y = 1|x; \theta) = 1$
- ► For example:
 - ▶ predict ,,y=1" if $h_{\theta}(x) \ge 0.5$
 - ▶ predict ,,y=0" if $h_{\theta}(x) < 0.5$

Exercise

Sigmoid function $g(z)=h_{\theta}(x)$

In case of one feature, predict "y=1" if

- $\theta_0 + \theta_1 x < 0$
- $\theta_0 + \theta_1 x \ge 0$
- $\theta_0 + \theta_1 x < 0.5$
- $\theta_0 + \theta_1 x \ge 0.5$

Decision Boundary

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

Predict "y=1" if
$$\theta_0 + \theta_1 x_1 + \theta_2 x_2 \ge 0$$

For example if

$$\theta_0 = -3$$
; $\theta_1 = 1$ and $\theta_2 = 1$, we get:
Predict "y=1" if $x_1 + x_2 \ge 3$

Therefore, we need to plot the line

$$x_1 + x_2 = 3$$

Exercise

Consider logistic regression with two features x_1 and x_2 . Suppose $\theta_0 = 5$, $\theta_1 = -1$ and $\theta_2 = 0$. Draw the decision boundary and show in which area "y=1" and where "y=0".

Logistic Regression Cost Function

In linear regression:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Let's say

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Therefore in linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)})$$

► In logistic regression:

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = \begin{cases} -log(h_{\theta}(x^{(i)})) & \text{if } y = 1\\ -log(1 - h_{\theta}(x^{(i)})) & \text{if } y = 0 \end{cases}$$

Logistic Regression Cost Function

We have

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y^{(i)})$$
$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = \begin{cases} -log(h_{\theta}(x^{(i)})) & \text{if } y = 1\\ -log(1 - h_{\theta}(x^{(i)})) & \text{if } y = 0 \end{cases}$$

▶ We can write out cost differently:

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = -y^{(i)} \cdot log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) \cdot log(1 - h_{\theta}(x^{(i)}))$$

because y is always 0 or 1

Therefore:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \cdot log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot log(1 - h_{\theta}(x^{(i)})) \right]$$

Logistic Regression Gradient Descent

Gradient descent for logistic regression:

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$j = 0, \dots, n$$

- ▶ The same as for linear regression!
- ► However, in linear regression $h_{\theta}(x) = \theta^T x$ and in logistic regression $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

Regularized Logistic Regression

► Logistic regression cost function with regularization:

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \cdot log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \cdot log(1 - h_{\theta}(x^{(i)})) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

Logistic regression gradient descent with regularization:

Repeat until convergence:

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_0^{(i)}$$

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \left[\sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)} + \lambda \sum_{i=1}^n \theta_j \right]$$

$$j = 1, \dots, n$$

Classification accuracy = $\frac{\text{number of correct predictions}}{\text{number of all predictions}}$

 $Misclassification error = \frac{number of mislabeled predictions}{number of all predictions}$

Classification of tumor cells

Evaluating a Hypothesis

(1) Divide dataset:

- ▶ 70 % training set and 30 % test set or
- ▶ 60 % training set, 20 % cross validation set and 20 % test set
- (2) Learn parameter θ from training set
- (3) Evaluate hypothesis on test set
 - ► Compute test set error

$$J_{test}(\theta) = -\frac{1}{m_{test}} \left[\sum_{i=1}^{m_{test}} y_{test}^{(i)} \cdot log\left(h_{\theta}\left(x_{test}^{(i)}\right)\right) + (1 - y_{test}^{(i)}) \cdot log\left(1 - h_{\theta}\left(x_{test}^{(i)}\right)\right) \right]$$

- ► Misclassification error
- Classification accuracy

Infant ID	Gestational Age (weeks)	Birth Weight (grams)
1	34,7	1895
2	36	2030
3	29,3	1440
4	40,1	2835
5	35.7	3090
6	42.4	3827
7	40.3	3260
8	37.3	2690
9	40.9	3285
10	38.3	2920

Exercise

If we get low training error $J(\theta)$ and high test error $J_{test}(\theta)$, what can we say about our learning algorithm hypothesis?

Evaluating a Hypothesis

Underfitting - both, test error and CV error are high

Overfitting - train error is low, but CV error is high

Evaluating a Hypothesis

- Getting more training examples fixes overfitting
- Trying smaller sets of features fixes overfitting
- Adding features fixes underfitting
- Trying polynomial features fixes underfitting
- \triangleright Increasing λ fixes overfitting
- \triangleright Decreasing λ fixes underfitting

MATLAB Assignment

You measure the cell radius 13.5 µm and cell symmetry 0.193. What is the probability of this cell being malignant?

- Create logistic regression model in MATLAB using function mnrfit
- Use the obtained model to estimate the probability using function mnrval
- ► In X, first row is cell radius and second row is cell symmetry. Y is 1 if tumor is malignant and 0 if benign.
- Plot data and predicted line separating malignant and benign data.