
6 Line integral

Line integral is an integral where the function to be integrated is evalu-
ated along a curve. The terms path integral, curve integral, and curvilinear
integral are also used.

6.1 Line integral with respect to arc length

Suppose that on the plane curve AB there is defined a function of two
variables f(x, y), i.e. to any point (x, y) of this curve there is related the
value f(x, y). Let

A = P0, P1, P2, . . . , Pk−1, Pk, . . . , Pn = B

the random partition of the curve AB into subarcs P̂k−1Pk, k = 1, 2, . . . , n.

From every subarc we pick a random point Qk(ξk, ηk) ∈ P̂k−1Pk.

Denote by ∆sk the length of the subarc P̂k−1Pk. Now we multiply the
value at the point chosen by the length of subarc f(Qk)∆sk, where k =
1, 2, . . . , n. Adding all those products, we get the sum

sn =
n∑
k=1

f(Qk)∆sk (6.1)

which is called the integral sum of the function f(x, y) over the curve AB.
We have the random partition of the curve AB. Therefore, the lengths

∆sk of subarcs P̂k−1Pk are different. Denote by λ the greatest length of
subarcs, i.e.

λ = max
1≤k≤n

∆sk

Definition. If there exists the limit

lim
λ→0

sn

and this limit does not depend on the partition of AB and does not depend
on the choice of the points Qk on the subarcs, then this limit is called the
line integral with respect to arc length and denoted by∫

AB

f(x, y)ds
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Thus, by the definition∫
AB

f(x, y)ds = lim
λ→0

n∑
k=1

f(Qk)∆sk

Line integral with respect to arc length is also referred as line integral of a
scalar field because f(x, y) defines a scalar field on the curve AB.

Suppose the curve AB is the piece of wire. If the function ρ(x, y) ≥ 0
represents the density (mass per unit length) for wire AB, then the product
ρ(Qk)∆sk is the approximate mass of subarc ∆sk and the integral sum

n∑
k=1

ρ(Qk)∆sk

is the approximate mass of the wire AB. For shorter subarc the value ρ(Qk)
represents the variable density ρ(x, y) of subarc with greater accuracy. Thus,
in this case the limit of the integral sum, i.e. the line integral with respect
to arc length gives the mass of the wire AB:

m =

∫
AB

ρ(x, y)ds (6.2)

The properties on the line integral with respect to arc length can be
proved directly, using the definition.

Property 1. The line integral with respect to arc length does not depend
on the direction the curve AB has been traversed:∫

AB

f(x, y)ds =

∫
BA

f(x, y)ds

Property 2. (Additivity property) If C is some point on the curve AB,
then ∫

AB

f(x, y)ds =

∫
AC

f(x, y)ds+

∫
CB

f(x, y)ds

Property 3.∫
AB

[f(x, y)± g(x, y)]ds =

∫
AB

f(x, y)ds±
∫
AB

g(x, y)ds

Property 4. If c ic a constant, then∫
AB

cf(x, y)ds = c

∫
AB

f(x, y)ds
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Property 5. Taking in the definition of the line integral with respect to
arc length f(x, y) ≡ 1, we get the integral sum

sn =
n∑
k=1

∆sk

which is the sum of lengths of subarcs. This is the length of arc AB for any
partition. Thus, for f(x, y) ≡ 1 the line integral gives us the length of arc
AB:

sAB =

∫
AB

ds

Property 5 can be also obtained by taking in (6.2) the density ρ(x, y) ≡ 1
because then the mass and the length of the curve are numerically equal.

Any point of the curveAB in the space has three coordinatesQk(ξk, ηk, ζk).
So, the function defined on the space curve is in general a function of three
variables f(x, y, z). Defining the line integral with respect to arc length along
the space curve we do everything like we did in the definition for the two-
dimensional case: ∫

AB

f(x, y, z)ds = lim
λ→0

n∑
k=1

f(Qk)∆sk (6.3)

Of course, five properties of the line integral for three-dimensional case
are still valid.

6.2 Evaluation of line integral with respect to arc length

Suppose that the parametric equations of the curve AB in the plane are{
x = x(t)
y = y(t)

and the parametric equations of the curve AB in the space are
x = x(t)
y = y(t)
z = z(t),

where at the point A the value of the parameter t = α and at the point B
the value of the parameter t = β.
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Definition 1. The plane curve AB is called smooth, if ẋ =
dx

dt
and

ẏ =
dy

dt
are continuous on [α; β] and

ẋ2 + ẏ2 6= 0

Definition 2. The curve AB in the space is called smooth, if ẋ =
dx

dt
,

ẏ =
dy

dt
and ż =

dz

dt
are continuous on [α; β] and

ẋ2 + ẏ2 + ż2 6= 0

Intuitively, a smooth curve is one that does not have sharp corners.
Theorem 1. If the function f(x, y) is continuous on the smooth curve

AB, then ∫
AB

f(x, y)ds =

β∫
α

f [x(t), y(t)]
√
ẋ2 + ẏ2dt (6.4)

Theorem 2. If the function f(x, y, z) is continuous on the smooth curve
AB, then

∫
AB

f(x, y, z)ds =

β∫
α

f [x(t), y(t), z(t)]
√
ẋ2 + ẏ2 + ż2dt (6.5)

If r(t) = (x(t), y(t), z(t)) is the position vector of a point on the curve,
then the square root in the formula (6.5) is the length of ṙ(t) = (ẋ(t), ẏ(t), ż(t))
i.e |ṙ(t)| =

√
ẋ2 + ẏ2 + ż2. The formula (6.5) can be re-written as

∫
AB

f(x, y, z)ds =

β∫
α

f [x(t), y(t), z(t)]|ṙ(t)|dt

Suppose the curve AB is a graph of the function y = ϕ(x) given explicitly,
at the point A x = a and at B x = b. The curve is smooth, if there exists
ϕ′(x) on the interval [a; b].

Theorem 3. If the function f(x, y) is continuous on the smooth curve
AB, then ∫

AB

f(x, y)ds =

b∫
a

f [x, ϕ(x)]
√

1 + y′2dx (6.6)
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This theorem is the direct conclusion of Theorem 1 because treating the

variable x as the parameter, we have ẋ = 1 and ẏ =
dy

dx
= y′.

Example 1. Compute the line integral

∫
AB

ds

x− y
, where AB is the seg-

ment of the line y = 2x− 3 between coordinate axes.
The line is the graph of the function given explicitly. Therefore, we use

for the computation the formula (6.6).
At the intersection point by y axis x = 0 and at the intersection point by

x axis y = 0, i.e. x =
3

2
. To apply the formula, we find y = 2 and 1+y′2 = 5.

Thus,

∫
AB

ds

x− y
=

3
2∫

0

√
5dx

x− (2x− 3)
=
√

5

3
2∫

0

dx

3− x
= −
√

5

3
2∫

0

d(3− x)

3− x

= −
√

5 ln |3− x|
∣∣∣∣ 32
0

= −
√

5

(
ln

3

2
− ln 3

)
= −
√

5 ln
1

2
=
√

5 ln 2

Example 2. Compute the line integral

∫
AB

√
yds, where AB is the first

arc of cycloid x = a(t− sin t), y = a(1− cos t).

y

x

a

aπ 2aπO

P

Q

Figure 6.1: cycloid

For the first arc of cycloid 0 ≤ t ≤ 2π. To apply the formula (6.4), we
find ẋ = a(1− cos t), ẏ = a sin t and

ẋ2+ẏ2 = a2(1−cos t)2+a2 sin2 t = a2(1−2 cos t+cos2 t+sin2 t) = 2a2(1−cos t)
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By the formula (6.4)∫
AB

√
yds =

2π∫
0

√
a(1− cos t)

√
2a2(1− cos t)dt =

a
√

2a

2π∫
0

(1− cos t)dt = a
√

2a(t− sin t)

∣∣∣∣2π
0

= 2πa
√

2a

Example 3. Compute the line integral

∫
AB

(2z−
√
x2 + y2)ds, where AB

is the first turn of conical helix x = t cos t, y = t sin t, z = t.
For the first turn of conical helix 0 ≤ t ≤ 2π. Find ẋ = cos t − t sin t,

ẏ = sin t+ t cos t, ż = 1 and

ẋ2 + ẏ2 + ż2 = (cos t− t sin t)2 + (sin t+ t cos t)2 + 1 =

cos2 t− 2t cos t sin t+ t2 sin2 t+ sin2 t+ 2t sin t cos t+ t2 cos2 t+ 1 = 2 + t2

By the formula (6.5) we obtain∫
AB

(2z −
√
x2 + y2)ds =

2π∫
0

(2t−
√
t2 cos2 t+ t2 sin2 t)

√
2 + t2dt =

2π∫
0

(2t− t)
√

2 + t2dt =

2π∫
0

t
√

2 + t2dt =
1

2

2π∫
0

√
2 + t2d(2 + t2) =

1

2

(2 + t2)
3
2

3
2

∣∣∣∣2π
0

=
(2 + t2)

3
2

3

∣∣∣∣2π
0

=
(2 + 4π2)

√
2 + 4π2 − 2

√
2

3

6.3 Line integral with respect to coordinates

In the first subsection we defined the line integral for the scalar field.
Now we are going to define the line integral for the vector field. First we
consider the two-dimensional case. Let AB be the curve in the plane and−→
F = (X(x, y);Y (x, y)) a force vector. Suppose that the force is applied to
an object to move it along the curve AB. The goal in to find the work done
by this force. To do it, we first divide the curve AB with the points

A = P0, P1, . . . , Pk−1, Pk, . . . , Pn = B

into subarcs P̂k−1Pk, where k = 1, 2, . . . , n and approximate any subarc

P̂k−1Pk to the vector
−−−−→
Pk−1Pk.
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Denote the coordinates of the kth partition point Pk by xk and yk, i.e.

Pk(xk; yk) and the coordinates of the vector
−−−−→
Pk−1Pk by

∆xk = xk − xk−1

and
∆yx = yk − yk−1

that is −−−−→
Pk−1Pk = (∆xk; ∆yk)

Let ∆sk be the magnitude of the vector
−−−−→
Pk−1Pk:

∆sk =
√

∆x2
k + ∆y2

k

and λ the greatest of all those magnitudes

λ = max
1≤k≤n

∆sk

Next we choose a random point Qk(ξk; ηk) on any subarc P̂k−1Pk and
substitute on this subarc the variable force vector by the constant force vector

−→
Fk = (X(ξk, ηk);Y (ξk, ηk))

Recall that if a constant force
−→
Fk is applied to an object to move it along

a straight line from the point Pk−1 to the point Pk, then the amount of work

done Ak is the scalar product of the force vector and the vector
−−−−→
Pk−1Pk:

Ak =
−→
Fk ·
−−−−→
Pk−1Pk = X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk

The total work done by the force vector
−→
F , moving an object from the

point A to the point B along the curve is approximately

n∑
k=1

[X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk]. (6.7)

Approximately because we have approximated the subarc P̂k−1Pk to the

vector
−−−−→
Pk−1Pk and the variable force vector

−→
F = (X(x, y);Y (x, y)) to the

constant vector
−→
Fk = (X(ξk, ηk);Y (ξk, ηk)).

Obviously, taking more partition points, the subarcs get shorter and the

vectors
−−−−→
Pk−1Pk represent the subarcs P̂k−1Pk with greater accuracy. As well,
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the constant vector
−→
Fk = (X(ξk, ηk);Y (ξk, ηk)) represents the variable vector

−→
F = (X(x, y);Y (x, y)) on P̂k−1Pk with greater accuracy.

Definition. If the sum (6.7) has the limit as max ∆sk → 0 and this limit
does not depend on the partition of the curve AB and does not depend on
the choice of points Qk on subarcs, then this limit is called the line integral
with respect to coordinates and denoted∫

AB

X(x, y)dx+ Y (x, y)dy

Thus, by the definition∫
AB

X(x, y)dx+ Y (x, y)dy = lim
λ→0

n∑
k=1

[X(ξk, ηk)∆xk + Y (ξk, ηk)∆yk] (6.8)

If AB is a curve in the space, then

−−−−→
Pk−1Pk = (∆xk; ∆yk; ∆zk)

and the magnitude of this vector

∆sk =
√

∆x2
k + ∆y2

k + ∆z2
k

Also the force vector has three coordinates

−→
F = (X(x, y, z);Y (x, y, z));Z(x, y, z))

The line integral with respect to coordinates is defined as the limit∫
AB

X(x, y, z)dx+ Y (x, y, z)dy + Z(x, y, z)dz

= lim
λ→0

n∑
k=1

[X(ξk, ηk, ζk)∆xk + Y (ξk, ηk, ζk)∆yk + Z(ξk, ηk, ζk)∆zk]

We consider the properties of the line integral with respect to coordinates
for the curve in the plane. All of this discussion generalizes to space curves
in a straightforward manner.

Property 1. If C is a random point on the curve AB, then∫
AB

X(x, y)dx+Y (x, y)dy =

∫
AC

X(x, y)dx+Y (x, y)dy+

∫
CB

X(x, y)dx+Y (x, y)dy

(6.9)
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Property 2. If the curve is traced in reverse (that is, from the terminal
point to the initial point), then the sign of the line integral is reversed as
well: ∫

BA

X(x, y)dx+ Y (x, y)dy = −
∫
AB

X(x, y)dx+ Y (x, y)dy (6.10)

6.4 Evaluation of line integral with respect to coordi-
nates

Suppose that AB is a smooth curve in the plane

x = x(t), y = y(t)

and the functions X(x, y) and Y (x, y) are continuous on AB. Let at the
point A the parameter t = α and at the point B t = β.

Theorem 1. If the functions X(x, y) and Y (x, y) are continuous on the
smooth curve AB, then

∫
AB

X(x, y)dx+ Y (x, y)dy =

β∫
α

[X(x(t), y(t))ẋ+ Y (x(t), y(t))ẏ]dt (6.11)

In three dimensional case there holds the similar theorem. Suppose that
on the line AB

x = x(t), y = y(t), z = z(t)

there is defined a vector function
−→
F (x, y, z) = X(x, y, z), Y (x, y, z), Z(x, y, z).

Suppose again that at the point A the parameter t = α and at the point B
t = β.

Theorem 2. If the functions X(x, y, z), Y (x, y, z) and Z(x, y, z) are
continuous on the smooth curve AB, then∫

AB

X(x, y, z)dx+ Y (x, y, z)dy + Z(x, y, z)dz

=

β∫
α

[X(x(t), y(t), z(t))ẋ+ Y (x(t), y(t), z(t))ẏ + Z(x(t), y(t), z(t))ż]dt

(6.12)
Conclusion. Suppose the plane curve AB is the graph of the function

y = y(x) given explicitly and at the point A x = a and at B x = b. Treating
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the variable x as a parameter, we obtain ẋ = 1, ẏ = y′ and by the formula
(6.11)

∫
AB

X(x, y)dx+ Y (x, y)dy =

b∫
a

[X(x, y(x)) + Y (x, y(x))y′]dx (6.13)

Remark. Sometimes (especially for vertical lines) it is necessary to consider
y as the independent variable and x as the function x = x(y). Changing the
roles of the variables x and y, we get

∫
AB

X(x, y)dx+ Y (x, y)dy =

b∫
a

[X(x(y), y)x′ + Y (x(y), y)]dy (6.14)

A curve L is called closed if its initial and final points are the same point.
For example a circle is a closed curve. A curve L is called simple if it doesn’t
cross itself. A circle is a simple curve while a figure ∞ type curve is not
simple. If L is not a smooth curve, but can be broken into a finite number
of smooth curves, then we say that L is piecewise smooth. The line integral
over the piecewise smooth closed simple curve L is often denoted∮

L

X(x, y)dx+ Y (x, y)dy

The positive orientation of the closed curve L is that as we traverse the
curve following the positive orientation the region D bounded by L must
always be on the left.

x

y

L

D

Figure 6.2: Positively oriented closed curve
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Example 1. Compute

∫
AB

x cos ydx−y sinxdy over the straight line from

A(0; 0) to B(π; 2π).

The direction vector of the line is
−→
AB = (π; 2π) and the parametric

equations
x = πt
y = 2πt,

At the point A the parameter t = 0 and at the point B t = 1. To apply the
formula (6.11) we find ẋ = π and ẏ = 2π. By the formula

∫
AB

x cos ydx− y sinxdy =

1∫
0

(πt cos 2πt · π − 2πt sin πt · 2π)dt

= π2

1∫
0

[t(cos 2πt− 4 sinπt)]dt = . . .

The integral obtained we integrate by parts, taking

u = t, dv = cos 2πt− 4 sinπt

Then

du = dt, v =
1

2π
sin 2πt+

4

π
cos πt

and

. . . = π2

t( 1

2π
sin 2πt+

4

π
cosπt

) ∣∣∣∣1
0

−
1∫

0

(
1

2π
sin 2πt+

4

π
cos πt

)
dt


= π2

[
− 4

π
+

(
1

4π2
cos 2πt− 4

π2
sin πt

) ∣∣∣∣1
0

]
= −4π

Example 2. Compute

∮
L

(x2 + y)dx + xydy, where L is the positively

oriented triangle OAB with vertices O(0; 0), A(2; 1) and B(0; 1).
The triangle is sketched in Figure 7.3. Notice that the triangle is a simple

closed piecewise smooth curve, because it consists of three smooth lines.
By Property 1∮

L

(x2+y)dx+xydy =

∫
OA

(x2+y)dx+xydy+

∫
AB

(x2+y)dx+xydy+

∫
BO

(x2+y)dx+xydy
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x

y

B
A

O

1

2

By Property 2 the direction is important. Compute all three line integrals.

The side OA has the equation y =
x

2
, 0 ≤ x ≤ 2 and y′ =

1

2
. By the formula

(6.13)

∫
OA

(x2 + y)dx+ xydy =

2∫
0

(
x2 +

x

2
+ x · x

2
· 1

2

)
dx =

2∫
0

(
5x2

4
+
x

2

)
dx

The side AB has the equation y = 1, hence, y′ = 0. At the initial point
A x = 2 and at the end point B x = 0. Thus, by (6.13)

∫
AB

(x2 + y)dx+ xydy =

0∫
2

(x2 + 1 + x · 1 · 0)dx =

0∫
2

(x2 + 1)dx

The third side BO of the triangle is the vertical line x = 0, hence, x′ = 0.
At the point B y = 1 and at the point O y = 0. To compute the third line
integral we use the formula (6.14)

∫
BO

(x2 + y)dx+ xydy =

0∫
1

[(0 + y) · 0 + 0 · y]dy = 0

Therefore,

∮
L

(x2 + y)dx+ xydy =

2∫
0

(
5x2

4
+
x

2

)
dx+

0∫
2

(x2 + 1)dx
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Changing the limits in the last integral gives∮
L

(x2 + y)dx+ xydy =

2∫
0

(
5x2

4
+
x

2
− x2 − 1

)
dx

=

2∫
0

(
x2

4
+
x

2
− 1

)
dx =

(
x3

12
+
x2

4
− x
) ∣∣∣∣2

0

=
2

3
+ 1− 2 = −1

3

We shall return to the last example once more.

6.5 Green’s formula

In this subsection we are going to investigate the relationship between
certain kinds of line integrals (on closed curves) and double integrals. Sup-
pose the functions X(x, y) and Y (x, y) are defined on the simple closed curve
L and in the region D enclosed by this curve.

Theorem (Green’s formula). If the functions X(x, y) and Y (x, y)
are continuous on the closed simple piecewise smooth curve L, the partial

derivatives
∂Y

∂x
and

∂X

∂y
are continuous in the regular region D and L is

positively oriented, then∮
L

X(x, y)dx+ Y (x, y)dy =

∫∫
D

(
∂Y

∂x
− ∂X

∂y

)
dxdy (6.15)

x

y

B
A

E

F

a b

L
y = ϕ2(x)

y = ϕ1(x)

Example. Let us compute the line integral∮
L

(x2 + y)dx+ xydy
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given in Example 2 of the previous subsection once more, using the Green’s
formula.

Here X(x, y) = x2 + y and Y (x, y) = xy. To apply the Green’s formula

(6.15) we find
∂Y

∂x
= y and

∂X

∂y
= 1. Let D be the region bounded by L. By

the formula (6.15)∮
L

(x2 + y)dx+ xydy =

∫∫
D

(y − 1)dxdy

Using Figure 7.3, we determine the limits of integration 0 ≤ x ≤ 2 and
x

2
≤ y ≤ 1. Hence,

∮
L

(x2 + y)dx+ xydy =

2∫
0

dx

1∫
x
2

(y − 1)dy

Find the inside integral

1∫
x
2

(y − 1)dy =

1∫
x
2

(y − 1)d(y − 1) =
(y − 1)2

2

∣∣∣∣1
x
2

= −
(
x
2
− 1
)2

2
= −(x− 2)2

8

and the outside integral

2∫
0

[
−(x− 2)2

8

]
dx = −1

8

2∫
0

(x−2)2d(x−2) = −1

8

(x− 2)3

3

∣∣∣∣2
0

=
1

8

(−2)3

3
= −1

3

6.6 Path independent line integral

In this subsection we find out in what conditions the line integral∫
AB

X(x, y)dx+ Y (x, y)dy (6.16)

depends only on the endpoints A and B of the line but not on the path of
integration.

Assume that in the region D containing the points A and B the functions

X(x, y) and Y (x, y) and the partial derivatives
∂X

∂y
and

∂Y

∂x
are continuous.

Let’s choose two whatever curves AEB and AFB in the region D joining
the points A and B.
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x

y

B
A

E

F
D

So, we want to know in which conditions for any curves AEB and AFB∫
AEB

Xdx+ Y dy =

∫
AFB

Xdx+ Y dy

i.e. ∫
AEB

Xdx+ Y dy −
∫

AFB

Xdx+ Y dy = 0

By Property 2 of the line integral with respect to coordinates∫
AEB

Xdx+ Y dy +

∫
BFA

Xdx+ Y dy = 0

and by Property 1 ∫
AEBFA

Xdx+ Y dy = 0

Denoting the closed curve AEBFA = L, we obtain the condition∮
L

Xdx+ Y dy = 0 (6.17)

This condition we obtain for any curves between any two points A and
B in the region D. We shall call the curve joining the points A and B the
path of integration.

Consequently, if the line integral (6.16) is path independent, then for each
closed curve L in the region D there holds (6.17).

Theorem 1. The line integral (6.16) is path independent in the region
D if and only if for any closed curve L in the region D there holds (6.17).
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Next, suppose that for every closed curve L in the region D there holds
(6.17). By the assumptions made in the beginning of this subsection there
holds Green’s formula. Denote by ∆ the region enclosed by the closed curve
L. According to Green’s formula (6.15)∫∫

∆

(
∂Y

∂x
− ∂X

∂y

)
dxdy = 0

Then also
∂Y

∂x
− ∂X

∂y
= 0

or
∂Y

∂x
=
∂X

∂y
(6.18)

Now Theorem 1 gives us the following theorem.
Theorem 2. The line integral (6.16) is path independent in the region

D if and only if in the region D there holds the condition (6.18).
The path independent line integral (6.16) is also denoted by

B∫
A

Xdx+ Y dy

Example 1. The line integral

B∫
A

(2x cos y − y2 sinx)dx+ (2y cosx− x2 sin y)dy

is path independent because

∂

∂x
(2y cosx− x2 sin y) = −2y sinx− 2x sin y

and
∂

∂y
(2x cos y − y2 sinx) = −2x sin y − 2y sinx

Example 2. Compute

(2,1)∫
(0,0)

2xydx+ x2dy
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This line integral is path independent because

∂(x2)

∂x
= 2x

and
∂(2xy)

∂y
= 2x

Thus, we can choose whatever path of integration joining the points (0; 0)
and (2; 1). Let’s choose the broken line OBA, where O(0, 0), B(2; 0) and
A(2; 1). Usually, choosing the kind of broken line, whose segments are parallel
to coordinate axes, gives us the most simple computation.

x

y

B

A

O

1

2

By Property 1 of the line integral with respect to coordinates

(2,1)∫
(0,0)

2xydx+ x2dy =

(2,0)∫
(0,0)

2xydx+ x2dy +

(2,1)∫
(2,0)

2xydx+ x2dy

The equation of the line OB is y = 0, which gives y′ = 0. On the segment
OB 0 ≤ x ≤ 2 and by the formula (6.13)

(2,0)∫
(0,0)

2xydx+ x2dy =

2∫
0

(2x · 0 + x2 · 0)dx = 0

The equation of the line BA is x = 2, i.e. x′ = 0. On the segment BA
the variable 0 ≤ y ≤ 1 and by the formula (6.14)

(2,1)∫
(2,0)

2xydx+ x2dy =

1∫
0

(4y · 0 + 4)dy = 4
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Hence,
(2,1)∫

(0,0)

2xydx+ x2dy = 4

If there exists a function of two variables u(x, y) such that the total dif-
ferential of this function is

du = X(x, y)dx+ Y (x, y)dy

i.e. X =
∂u

∂x
and Y =

∂u

∂y
, then

∂X

∂y
=

∂2u

∂x∂y

and
∂Y

∂x
=

∂2u

∂y∂x

Because of continuity the condition (6.18) holds.

Recall that the vector field
−→
F = (X(x, y), Y (x, y)) is conservative, if

−→
F is

the gradient of a scalar field u(x, y) and the function u(x, y) is the potential

function of
−→
F . Then du = X(x, y)dx + Y (x, y)dy is the total differential of

u(x, y) and the condition (6.18) holds.

Conclusion 1. For the conservative vector field
−→
F = (X(x, y), Y (x, y))

the line integral (6.16) is path independent.

Conclusion 2. For the conservative vector field
−→
F = (X(x, y), Y (x, y))

the line integral over any closed curve L∮
L

X(x, y)dx+ Y (x, y)dy = 0

Conclusion 3. If u(x, y) is the potential function of the conservative

vector field
−→
F = (X(x, y), Y (x, y)), then

B∫
A

X(x, y)dx+ Y (x, y)dy =

B∫
A

du(x, y) = u(x, y)

∣∣∣∣B
A
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