
IEE2620: System Aspects in Communications

Muhammad Mahtab Alam, Professor

Contents

3GPP Protocol Architecture for 5G

5G NR Physical Resource

5G NR Channels and Signals on 18B Application

Contents

3GPP Protocol Architecture for 5G

5G NR Physical Resource

5G NR Channels and Signals on 18B Application

- 1 5G Numerology
- 2 Time-Domain Resources
- 3 Frequency-Domain Resources
- 4 Space-Domain Resources

SCS(SubCarrier Spacing)

Numerologies supported by 3GPP Release 15 (TS 38.211)

μ	scs	СР
0	15 kHz	Normal
1	30 kHz	Normal
2	60 kHz	Normal, extended
3	120 kHz	Normal
4	240 kHz	Normal

Application scenarios:

Scalable Numerology					
Flexibility Example					
Case 1	Different spectrum	Sub-6 GHz, mmWave			
Case 2	Multiple services	eMBB, URLLC, mMTC			
Case 3	Multiple scenarios	Low/high Speed			

- 3GPP TS 38.104 (RAN4) defines SCS for different frequency bands.
 - SCS for bands below 1GHz: 15 kHz, 30 kHz
 - SCS for bands btw 1GHz and 6GHz: 15 kHz, 30 kHz, 60 kHz
 - SCS for band 24GHz to 52.6GHz: 60 kHz, 120 kHz
 - □ In Release 15, 240 kHz for data is not considered.

Recommended SCS for different frequency bands (eMBB services):

- 1 Numerology
- 2 Time-Domain Resources: CP, Symbol, Slot, Frame Structure
- 3 Frequency-Domain Resources
- 4 Space-Domain Resources

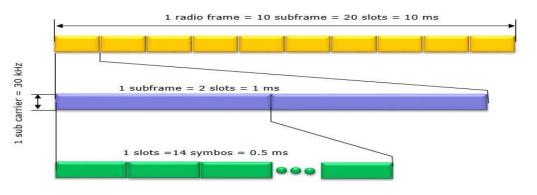
Frame Structure Architecture

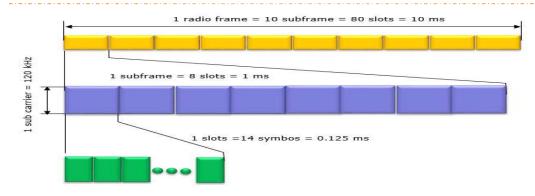
Frame length: 10ms

SFN (System Frame Number) range: 0 to 1023

Subframe length: 1ms

Subframe index per system frame: 0 to 9


Slot length: 14 symbols


	Slot	mal CP)	
SCS (kHz)	Number of Symbols/Slot Slots/Subframe		Number of Slots /Frame
15	14	1	10
30	14	2	20
60	14	4	40
120	14	8	80
240	14	16	160
480	14	32	320

	Slot Configuration (Extended CP)					
60	12	4	40			

• Frame structure architecture:

Example: SCS = 30 kHz/120 kHz

Time Units for the Physical Layer

Time units for the NR system: Ts and Tc
 Tc = 0.509 ns: sampling interval for the SCS of 480 kHz

$$\Delta f_{\text{max}} = 480 \times 10^{3}$$

$$T_{\text{c}} = 1/(\Delta f_{\text{max}} \cdot N_{\text{f}}) = 0.509 \text{ ns}$$

$$N_{\text{f}} = 4096$$

Ts = 32.552 ns: sampling interval for the SCS of 15 kHz

$$\Delta f_{ref} = 15 \times 10^{3}$$

$$T_{s} = 1/(\Delta f_{ref} \cdot N_{f, ref}) = 32.552 \text{ ns}$$

$$N_{f} = 2048$$

– K = 64: auxiliary parameter

$$\kappa = \frac{T_s}{T_c} = 64$$

- Frame and subframe length: Tf and Tsf
 - Tf = 10 ms (frame length)

$$\Delta f_{\text{max}} = 480 \times 10^{3}$$

$$N_{\text{f}} = 4096$$

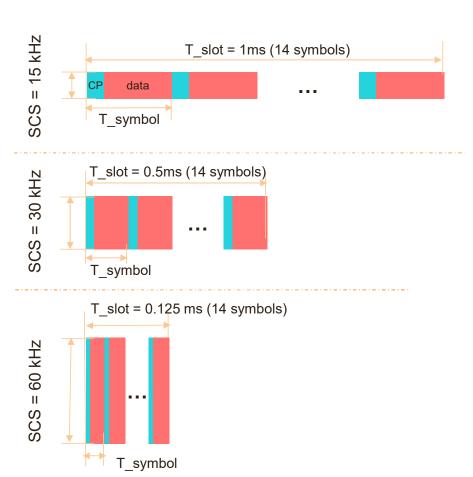
$$T_{\text{f}} = \begin{pmatrix} \Delta f_{\text{max}} & N_{\text{f}} \\ 100 \end{pmatrix} T_{\text{c}} = 10 \, \text{ms}$$

$$T_{\text{c}} = 0.509 \, \text{ns}$$

- Tsf = 1 ms (subframe length)

$$\Delta f_{\text{max}} = 480 \times 10^{3}$$

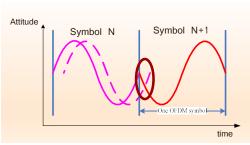
$$N_{\text{f}} = 4096$$

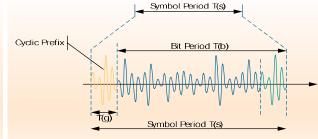

$$T_{\text{sf}} = \left(\frac{\Delta f_{\text{max}} \cdot N_{\text{f}}}{1000}\right) T_{c} = 1 \text{ms}$$

$$T_{c} = 0.509 \text{ns}$$

Relationship btw SCS and Symbol Length

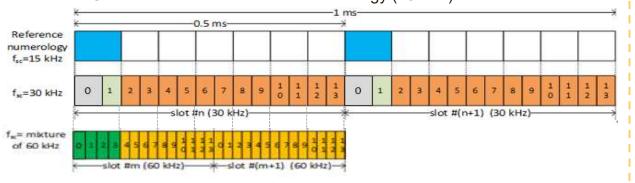
SCS and Symbol length/ CP length /Slot length


Parameter/Numerology (μ)	0	1	2	3	4
SCS (kHz): SCS = 15 x 2^(μ)	15	30	60	120	240
OFDM symbol for data duration (us): T_data = 1/SCS	66.67	33.33	16.67	8.33	4.17
CP Duration (µs): T_cp = 144/2048*T_data	4.69	2.34	1.17	0.59	0.29
OFDM symbol duration(µs): T_symbol = T_data + T_cp	71.35	35.68	17.84	8.92	4.46
Slot Length (ms): T_slot = 1/2^(μ)	1	0.5	0.25	0.125	0.0625



Cyclic Prefix (CP)

CP function:

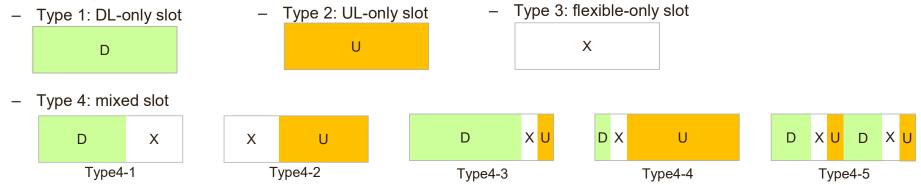

 To eliminate inter-channel interference (ICI) caused by multipath propagation.

• NR CP design principle:

 Same overhead as that in LTE, ensuring aligned symbols btw different SCS values and the reference numerology (15 kHz).

CP length for different SCS values:

$$N_{\text{CP},l}^{\mu} = \begin{cases} 512\kappa \cdot 2^{-\mu} & \text{extended cyclic prefix} \\ 144\kappa \cdot 2^{-\mu} + 16\kappa & \text{normal cyclic prefix}, \ l = 0 \text{ or } l = 7 \cdot 2^{\mu} \\ 144\kappa \cdot 2^{-\mu} & \text{normal cyclic prefix}, \ l \neq 0 \text{ and } l \neq 7 \cdot 2^{\mu} \end{cases}$$


$$T_{cp} = N_{cp} \cdot T_c$$

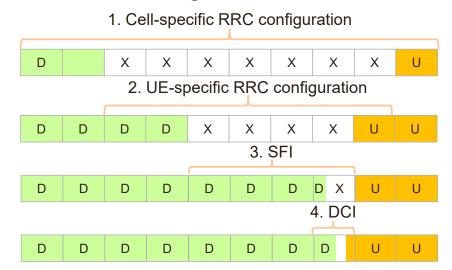
Parameter µ	SCS (kHz)	CP (µs)
0	15	T_{CP} : 5.2 µs for I = 0 or 7; 4.69 µs for others
1	30	T _{CP} : 2.86 μs for I = 0 or 14; 2.34 μs for others
2	60	T_{CP} : 1.69 µs for I = 0 or 28; 1.17 µs for others Extended T_{CP} : 4.17 µs
3	120	T _{CP} : 1.11 µs for I = 0 or 56; 0.59 µs for others
4	240	T _{CP} : 0.81 µs for I = 0 or 112; 0.29 µs for others

Slot Format and Type

- Slot structure (section 4.3.2 in 3GPP TS 38.211)
 - Downlink, denoted as D, for downlink transmission
 - Flexible, denoted as X, for flexibly usage.
 - Uplink, denoted as U, for uplink transmission

Main slot types

Compared with LTE slot format, NR features:


- Flexibility: symbol-level uplink/downlink adaptation in NR while subframe-level in LTE
- Diversity: More kinds of uplink/downlink configurations are supported in NR to cope with more scenarios and service types.

UL/DL Slot Configuration

- Configuration (section 11.1 in 3GPP TS 38.213)
 - Layer 1: semi-static configuration through cell-specific RRC signaling
 - Layer 2: semi-static configuration through UE-specific RRC signaling
 - Layer 3: dynamic configuration through UE-group SFI
 - Layer 4: dynamic configuration through UE-specific DCI

- Main characteristics: hierarchical configuration or separate configuration of each layer
 - Different from LTE, the NR system supports UE-specific configuration, which delivers high flexibility and high resource utilization
 - Support for symbol-level dynamic TDD

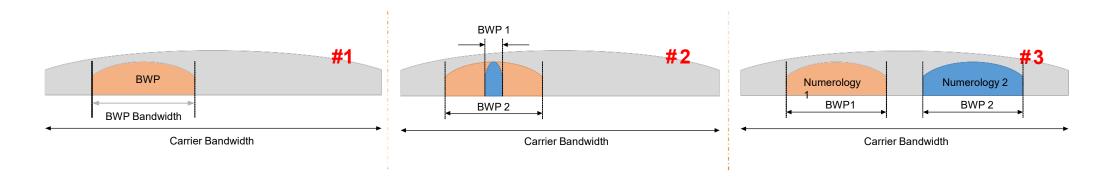
Hierarchical configuration

Separate layer configuration

Cell-specific RRC configuration/SFI

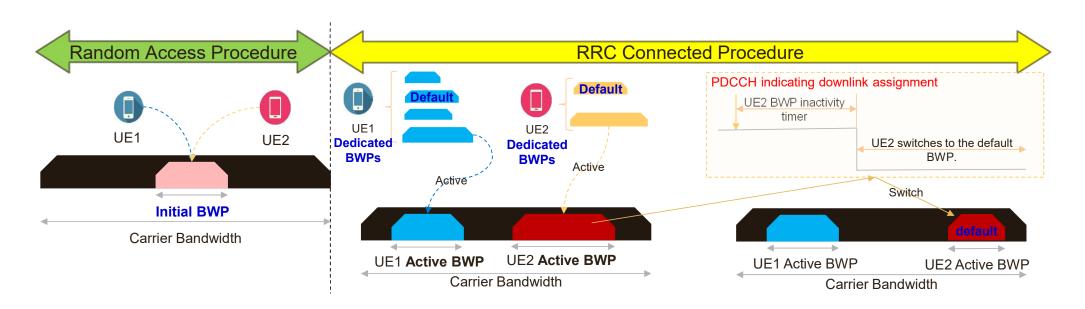
D D D D D D U U

- 1 Numerology
- 2 Time-Domain Resources
- 3 Frequency-Domain Resources: RB, RBG, REG, CCE, BWP
- 4 Space-Domain Resources


BWP Definition and Application Scenarios

Definition and characteristics

- The BWP is a new concept introduced in the NR system. It is a set of contiguous bandwidth resources allocated by the gNodeB to UEs.
 Its configuration is mandatory for 5G service access.
- It is a UE-level concept (BWP configurations vary with UEs). All channel resources allocated to UEs or to be scheduled are within the BWP range.


Application scenarios

- Scenario#1: UEs with a small bandwidth access a large-bandwidth network.
- Scenario#2: UEs switch between small and large BWPs to save battery power.
- Scenario#3: The numerology is unique for each BWP and service-specific.

BWP Types

- Initial BWP: used in the initial access phase
- Dedicated BWP: configured for UEs in RRC_CONNECTED mode.
 - -- According to 3GPP specifications, a maximum of **4** dedicated BWPs can be configured for a UE.
- Active BWP: one of the dedicated BWPs activated by a UE in RRC_CONNECTED mode.
 - -- According to 3GPP specifications, a UE in RRC CONNECTED mode can activate only 1 dedicated BWP at a given time.
- Default BWP: one of the dedicated BWPs used by the UE in RRC_CONNECTED mode after the BWP inactivity timer expires.

3GPP-defined 5G Frequency Ranges and Bands

450 MHz 6000 MHz 24.25 GHz 52.6 GHz

Frequency range

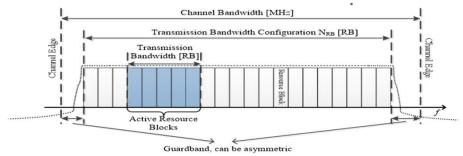
Frequency Range 1 (FR1)

Frequency Range 2 (FR2)

■ NR Operating Band⊮	Uplink (UL) operating band↓ BS receive↓ UE transmit₄	Downlink (DL) operating band↓ BS transmit↓ UE receive∌	Duplex Mode∂
■ *	F∪L_low — F∪L_high	F _{DL_low} − F _{DL_high}	٩
■ n1 <i>e</i>	1920 MHz→ → 1980 MHz →	2110 MHz∘ → 2170 MHz∘	FDD₽
n2₽	1850 MHz → 1910 MHz	1930 MHz- → 1990 MHz-	FDD₽
• n3₽	1710 MHz → 1785 MHz	1805 MHz- → 1880 MHz-	FDD₽
• n5 <i>-</i>	824 MHz	869 MHz- → 894MHz-	FDD₽
• n7 <i>-</i>	2500 MHz. → 2570 MHz.	2620 MHz- → 2690 MHz-	FDD₽
• n8₽	880 MHz≠ -≠ 915 MHz≠	925 MHz- → 960 MHz-	FDD₽
n20₽	832 MHz. → 862 MHz.	791 MHz≠ - 821 MHz≠	FDD₽
n28₽	703 MHz 748 MHz-	758 MHz- → 803 MHz-	FDD₽
■ n38 <i>-</i>	2570 MHz 2620 MHz.	2570 MHz	TDD₽
n41₽	2496 MHz - 2690 MHz	2496 MHz- → 2690 MHz-	TDD₽
n50₽	1432 MHz → 1517 MHz	1432 MHz → 1517 MHz	TDD₽
n51-	1427 MHz∘ 1432 MHz∘	1427 MHz- → 1432 MHz-	TDD₽
• n66 <i>-</i>	1710 MHz≠ → 1780 MHz ₽	2110 MHz- → 2200 MHz-	FDD₽
■ n70 <i>-</i>	1695 MHz → 1710 MHz	1995 MHz- → 2020 MHz-	FDD₽
• n71 <i>-</i>	663 MHz -	617 MHz- → 652 MHz-	FDD₽
n74₽	1427 MHz → 1470 MHz	1475 MHz → 1518 MHz	FDD₽
■ n75 <i>-</i>	N/A∘	1432 MHz- → 1517 MHz-	SDL₽
• n76 <i>-</i>	N/A₽	1427 MHz- → 1432 MHz-	SDL₽
n78 -	3300 MHz = - 3800 MHz =	3300 MHz → 3800 MHz	TDD₽
■ n77 <i>-</i>	3300 MHz. → 4200 MHz.	3300 MHz	TDD₽
■ n79 -	4400 MHz → 5000 MHz	4400 MHz → 5000 MHz	TDD₽
■ n80 <i>-</i>	1710 MHz₂ → 1785 MHz₂	N/A∘	SUL₽
■ n81 <i>-</i>	880 MHz. → 915 MHz.	N/A∘	SUL₽
n82₽	832 MHz. → 862 MHz.	N/A.	SUL₽
■ n83₽	703 MHz∘ 748 MHz∘	N/A∂	SUL₽
n84₽	1920 MHz → 1980 MHz	N/A₽	SUL₽

■ NR Operating Band	Uplink (UL) operating band↓ BS receive↓ UE transmitℯ	Downlink (DL) operating band↓ BS transmit ↓ UE receive∂	Duplex Mode∂
•	F∪L_low - F∪L_high	F _{DL_low} - F _{DL_high}	P
■ n257₽	26500 MHz 29500 MHz -	26500 MHz. → 29500 MHz .	TDD₽
■ n258₽	24250 MHz - 27500 MHz	24250 MHz. → 27500 MHz.	TDD₽
n260₽	37000 MHz - 40000 MHz	37000 MHz. → 40000 MHz.	TDD₽

- Frequency range (MHz)
 - □ 3GPP TS 38.101-2 defines 2 NR frequency ranges: FR1 and FR2. FR1 is often called sub-6 GHz while FR2 is often referred to as millimeter wave.
- 5G frequency band
 - □ 3GPP TS 38.101 mainly defines NR frequency bands.
 - NR and LTE have some frequency bands in same but the frequencies are represented in different ways.

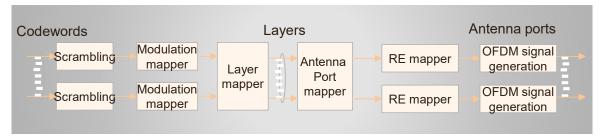

Source: 3GPP TS 38.101

Transmission Bandwidth and Spectrum Utilization

- Transmission bandwidth varies with RG and SCS.
 - Maximum transmission bandwidth on the gNodeB side (Table 5.3.2-1 and 5.3.2-2 in 3GPP TS 38.104)

SCS (kHz)	5 MHz	10 MHz	15 MHz	30 MHz	20 MHz	25 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
(KI12)				N	RB and Spec	ctrum Utiliz	zation (FR1:	400 MHz t	o 6000 MHz	2)			
15	25	52	79	[160]	106	133	216	270	-	-	-	-	-
15	90%	93.6%	94.8%		95.4%	95.8%	97.2%	97.2%	1	1	1	1	1
20	11	24	38	[78]	51	65	106	133	162	[189]	217	[245]	273
30	79.2%	86.4%	91.2%		91.8%	93.6%	95.4%	95.8%	97.2%		97.7%		98.3%
60	-	11	18	[38]	24	31	51	65	79	[93]	107	[121]	135
60		79.2%	86.4%		86.4%	893%	91.8%	93.6%	94.8%		93.6%		97.2%

scs	50 MHz	100 MHz	200 MHz	400 MHz			
(kHz)	N _{RB} and Spectrum Utilization (FR2: 24 GHz to 52 GHz)						
00	66	132	264	N/A			
60	95%	95%	95%	1			
100	32	66	132	264			
120	92.2%	95%	95%	95%			


- Maximum transmission bandwidth on the UE side (3GPP TS 38.101-1 and TS 38.101-2).
 - ✓ The number of RBs in the 30 MHz bandwidth is to be determined.
 - √ The 70 MHz and 90 MHz bandwidths are not supported.
 - ✓ Other values are the same as those on the gNodeB side.

- 1 Numerology
- 2 Time-Domain Resources
- 3 Frequency-Domain Resources
- 4 Space-Domain Resources: Layer, Antenna Port, QCL

Codeword and Antenna Ports

Basic concepts

- Codeword
 - Upper-layer service data on which channel coding applies.
 - Codewords uniquely identify data flow. By transmitting different data, MIMO implements spatial multiplexing.
 - The number of codewords depends on the rank of the channel matrix.
- Layer
 - Used to define mapping relationship btw codewords and transmit antenna.
- Antenna port
 - Antennas ports are defined based on reference signals.

Number of codewords ≤ Number of layers ≤ Number of antenna ports

Protocol-defined number of codewords

1 to 4 layers: 1 codeword

5 to 8 layers: 2 codewords

Protocol-defined maximum number of layers

For DL/User: 8@SU; 4@MU

For UL/User: 4@SU or MU

Protocol-defined number of antenna ports

	Channel/Signal	Maximum Number of Ports
	PUSCH with DMRS	8 or 12
UL	PUCCH	1
UL	PRACH	1
	SRS	4
	PDSCH with DMRS	8 or 12
DI	PDCCH	1
DL	CSI-RS	32
	SSB	1