
2. Elektrivoo tihedus, Gaussi 
seadus ja divergents
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Faraday katse
• Kaks metallist (juhtivast materjalist) kontsentrilist kera mis on teineteisest 

isolaatoriga (dielektrikuga) eraldatud. 

• Kerade raadiused r on vastavalt sisemisel a ja välimisel b.

• Sisemisele kerale antakse teadaolev positiivne laeng +Q. 

• Välimine kera maandatakse korraks ja seejärel 

mõõdetakse sellele indutseeritud laengu suurus. 
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Elektrivoog

• Faraday katse näitas, et sõltumatult kahe kera vahelisest isolaatorist 
on välimisel keral indutseeritud laeng mooduli poolest võrdne 
sisemisele kerale antud laenguga. 

• Tegemist oleks justnagu mingit sorti laengu nihkega (displacement) 
sisemiselt keralt välimisele. 

• Nihke, ehk elektrivoo (electric flux) Ψ (psii) suurus on võrdeline 
sisemisel keral oleva laengu Q suurusega. SI süsteemis on 
võrdeteguriks üks: 

• Elektrivoo mõõtühikuks on samuti kulon [C].
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𝛹 = 𝑄 .



Elektrivoo tihedus

• Elektrivoog Ψ algab sisemiselt keralt ja kulgeb sümmeetriliselt välimisele.

• Sisemise sfääri pinal on elektrivoog Q = Ψ ja see jaotud ühtlaselt üle kera 
pinna pindala 4πa2.

• Seega on elektrivoo tihedus (electric flux density) kera pinnal Q/ 4πa2 

[C/m2]. Elektrivoo tihedus D on vektorväli mille suund on määratud 
elektrivälja jõujoonte suunaga ning moodul jõujoonte arvuga pinnaühiku 
kohta.

• Elektrivoo tihedus, kerade vahel, kaugusel r (a ≤ r ≤ b) on

𝐃 =
𝑄

4𝜋𝑟2
𝐚𝑟 .
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Punktlaengu elektrivoo tihedus

• Me võime sisemise kera raadiust a vähendada senikaua kuni 
tulemuseks on punktlaeng kuid elektrivoo tiheduse avaldis jääb ikka 
samaks kui see oli kera korral:

𝐃 =
𝑄

4𝜋𝑟2
𝐚𝑟 .

• Võrdleme saadud tulemust punktlaengu elektrivälja tugevusega

𝐄 =
𝑄

4𝜋𝜀0𝑟
2
𝐚𝑟

• Näeme, et vaakumis kehtib seos
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𝐃 = 𝜀0𝐄 .



Elektrivoog läbi pinna
• Elektrivälja voog ΔΨ läbi väikese pinna ΔS on võrdne selle pindala ΔS 

ja elektrivoo tiheduse DS skalaarkorrutisega:

𝛥𝛹 = 𝐷𝑆cos 𝜃 Δ𝑆 = 𝐃𝐒 ∙ Δ𝐒.

• Koguvoog läbi terve pinna S on

Ψ =ඵ

𝑆

𝑑Ψ .
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Gaussi seadus

• Elektrivoog Ψ läbi mistahes kinnise (Gaussi) pinna S on võrdne selle 
pinna poolt piiratud laengu Q suurususega

• Diferentsiaalsel kujul:
div 𝐃 = 𝜌𝑣 .

• Tegemist on ühega neljast Maxwell-Heaviside võrrandist.
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𝛹 =඾

𝑆

𝐃𝑠 ∙ 𝑑𝐒 = 𝑄 =ම

𝑉

𝜌𝑣𝑑𝑣 .



Gaussi seaduse rakendamine

• Gaussi seaduse rakendamine on lihtne kui on täidetud kaks 
alljärgnevat tingimust:

• Kui elektrivoo tihedus Ds on kõikjal kas pinnaga paralleelne või 
pinnaga risti, siis on skalaarkorrutise Ds·dS väärtus kas null või saab 
selle asendada lihtsalt moodulite korrutisega Ds·dS.

• Kõikjal, kus skalaarkorrutise väärtus on nullist erinev (Ds·dS ≠ 0) on 
elektrivoo tihedus pinnal konstantne (Ds = const).
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Diferentsiaalne ruumielement

• Laeng Q ruumielemendis on 
Gaussi seadusest tulenevalt

𝑄 =඾

𝑆

𝐃𝑠 ∙ 𝑑𝐒 .

• Otsitava suuruse saame liites 
kõiki kuute kuubi tahku läbivate 
voogude väärtused. 
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Voog läbi esikülje

• Voog läbi esitahu on ligikaudu

𝛹𝑥,𝑒𝑠𝑖 ≈ 𝐷𝑥,𝑒𝑠𝑖∆𝑦∆𝑧 .

• Asendades elektrivoo tiheduse läbi esitahu tema Taylori rea kahe esimese 
liikmega (vt Lisa A) saame elektrivoo tiheduseks

𝐷𝑥,𝑒𝑠𝑖 ≈ 𝐷𝑥0 +
∆𝑥

2

𝜕𝐷𝑥
𝜕𝑥

.

• Seega voog läbi diferentsiaalse ruumielemendi esikülje on ligikaudu

𝛹𝑥,𝑒𝑠𝑖 ≈ 𝐷𝑥0 +
∆𝑥

2

𝜕𝐷𝑥
𝜕𝑥

∆𝑦∆𝑧 .
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Voog läbi tagakülje

• Voog läbi tagakülje on ligikaudu

𝛹𝑥,𝑡𝑎𝑔𝑎 ≈ 𝐷𝑥,𝑡𝑎𝑔𝑎(−∆𝑦∆𝑧) .

• Asendades elektrivoo tiheduse läbi tagakülje tema Taylori rea kahe esimese 
liikmega saame

𝐷𝑥,𝑡𝑎𝑔𝑎 ≈ 𝐷𝑥0 −
∆𝑥

2

𝜕𝐷𝑥
𝜕𝑥

.

• Seega voog läbi diferentsiaalse ruumielemendi tagakülje on

𝛹𝑥,𝑡𝑎𝑔𝑎 ≈ 𝐷𝑥0 −
∆𝑥

2

𝜕𝐷𝑥
𝜕𝑥

−∆𝑦∆𝑧 = −𝐷𝑥0 +
∆𝑥

2

𝜕𝐷𝑥
𝜕𝑥

∆𝑦∆𝑧.
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Koguvoog

• Panus koguvoogu läbi kuubi esi- ja tagakülje (x-telje sihis) on 

𝛹𝑥,𝑒𝑠𝑖 +𝛹𝑥,𝑡𝑎𝑔𝑎 ≈
𝜕𝐷𝑥
𝜕𝑥

∆𝑥∆𝑦∆𝑧 =
𝜕𝐷𝑥
𝜕𝑥

∆𝑣.

• Sarnaselt on vasaku- ja parema külje (y-telje sihis) panus kokku

𝛹𝑦,𝑣𝑎𝑠𝑎𝑘 +𝛹𝑦,𝑝𝑎𝑟𝑒𝑚 ≈
𝜕𝐷𝑦

𝜕𝑦
∆𝑥∆𝑦∆𝑧 =

𝜕𝐷𝑦

𝜕𝑦
∆𝑣.

• Viimasena sarnane seos ülemise ja alumise tahu jaoks

𝛹𝑧,ü𝑙𝑒𝑚𝑖𝑛𝑒 +𝛹𝑧,𝑝𝑎𝑟𝑒𝑚 ≈
𝜕𝐷𝑧
𝜕𝑧

∆𝑥∆𝑦∆𝑧 =
𝜕𝐷𝑧
𝜕𝑧

∆𝑣.
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Koguvoog

• Oleme saanud ligikaudse avaldise koguvoo jaoks

𝑄 =඾

𝑆

𝐃𝑠 ∙ 𝑑𝐒 ≈
𝜕𝐷𝑥
𝜕𝑥

+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧
𝜕𝑧

∆𝑣.

• Jagame saadud võrrandi mõlemad pooled ruumalaga ∆𝑣 ja leiame 
seejärel piirväärtuse

lim
∆𝑣→0

𝑄

∆𝑣
= 𝜌𝑣 = lim

∆𝑣→0

𝑆װ
𝐃𝑠 ∙ 𝑑𝐒

∆𝑣
=

𝜕𝐷𝑥
𝜕𝑥

+
𝜕𝐷𝑦

𝜕𝑦
+
𝜕𝐷𝑧
𝜕𝑧

.
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Vektorvälja divergents
• Vektorvälja A divergents on defineeritud kui

div 𝐀 = lim
Δ𝑣→0

𝑆װ
𝐀 ∙ 𝑑𝐒

Δ𝑣
.

• Arvutamiseks ristkoordinaadistikus:

div 𝐀 =
𝜕𝐴𝑥
𝜕𝑥

+
𝜕𝐴𝑦

𝜕𝑦
+
𝜕𝐴𝑧
𝜕𝑧

.

• Kasutades nabla operaatorit 

𝛻 =
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
,

div 𝐀 = ∇ ∙ 𝐀 .
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Divergentsi teoreem

• Tuntud ka kui Gaussi teoreem või Ostrogradski teoreem.

• Kehtib suvalise vektorvälja A kohta.

• Mistahes vektorvälja A normaalkomponendi kinnine pindintegraal üle 
suvalise pinna S on võrdne sama vektorvälja divergentsi ruum-
integraaliga üle antud pinna poolt piiratud ruumala V. ☺

• Elektrivoo tiheduse D puhul:
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඾
𝑆

𝐃 ∙ 𝑑𝐒 = ම

𝑉

∇ ∙ 𝐃𝑑𝑣 .
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Lisa A – Taylori rida

• Taylori rida on funktsiooni esitus astmereana, mille kordajateks on selle 
funktsiooni tuletised ühe etteantud argumendi väärtuse a juures.

• Lõpmatult diferentseeruva reaal- või kompleksmuutuja funktsiooni ƒ(x) 
Taylori rida punkti a ümbruses on astmerida kujul:

𝑓 𝑥 = ෍

𝑛=0

∞
𝑓 𝑛 (𝑎)

𝑛!
𝑥 − 𝑎 𝑛 .
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Lisa B - Sfäärilised koordinaadid
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