
12. Ühtlane tasalaine 
vaakumis

IEE1110 – Elektromagnetväljatehnika



Maxwell’i võrrandid vaakumis

• Gaussi seadus
∇ ∙ 𝐃 = 𝜌𝑣.

• Faraday seadus

∇ × 𝐄 = −
𝜕𝐁

𝜕𝑡
.

• Koguvoolu seadus:

∇ × 𝐇 = 𝐉 +
𝜕𝐃

𝜕𝑡
.

• Gaussi seadus magnetvälja kohta:
∇ ∙ 𝐁 = 0.

• Vaakumis puuduvad laengud:
∇ ∙ 𝐄 = 0.

• Puuduvad ka magnetilised dipoolid:

∇ × 𝐄 = −𝜇0

𝜕𝐇

𝜕𝑡
.

• Vaakum on isolaator:

∇ × 𝐇 = 𝜀0

𝜕𝐄

𝜕𝑡
.

• Magnetvälja jõujooned on kinnised:
∇ ∙ 𝐇 = 0.
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Kompleksarvud

• Kompleksarv z koosneb reaalosast x ja imaginaarosast y:
𝑧 = 𝑥 + 𝑦i,

kus i = −1 on imaginaarühik.

• Taolist esitlusviisi nimetatakse kompleksarvu 
algebraliseks kujuks.

• Kuna elektriga seotud valdkondades tähistatakse i –ga
üldjuhul voolutugevust siis kasutatakse nendel erialadel 
imaginaarühiku tähisena hoopis väikest j tähte:

j = −1.
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Kompleksarvude kujutamine

• Reaalarve saab visualiseerida kujutades 
neid punktina reaalarvude teljel. 

• Sarnaselt saab kompleksarve kujutada 
punktina komplekstasandil. Igale 
võimalikule kompleksarvule vastab üks 
kindel punkt tasandil.

• Komplekstasand on kahemõõtmeline 
tasand millel x koordinaat vastab 
kompleksarvu reaal- ja y koordinaat selle 
imaginaarosale. 
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z = 3 + 4j



Kompleksarvu eksponentsiaalne kuju

• Mitmeid ülesandeid on lihtsam lahendada kui kompleksarvu asukohta 
tasandil väljendada mitte rist- vaid polaarkoordinaatides. 

• Sellist väljendusviisi tuntakse kompleksarvu eksponentsiaalse kujuna:

𝑧 = 𝑧 𝑒j𝜑.

• Kompleksarvu moodul |z| ja faas φ (x-telje ehk polaartelje suhtes 
vastupäeva) on seotud tema reaal- ja imaginaarosaga järgmiselt

𝑧 = 𝑥2 + 𝑦2;

𝜑 = arctan
𝑦

𝑥
.
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Kompleksarvu esitusviisid
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Kompleksarvu trigonomeetriline kuju

• Teades kompleksarvu z mooduli |z| ja faasi φ väärtuseid saame alati 
nende kaudu leida selle reaal- ja imaginaarosa

𝑥 = Re 𝑧 = 𝑧 cos 𝜑 ;
𝑦 = Im 𝑧 = 𝑧 sin 𝜑 .

• Järgnevat kirjapilti 
𝑧 = 𝑧 𝑒𝑗𝜑 = 𝑧 cos 𝜑 + j 𝑧 sin 𝜑

nimetatakse kompleksarvu trigonomeetriliseks kujuks.
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Euleri valem

• Seost kompleksarvu eksponentsiaalse- ja trigonomeetrilise kuju vahel 
kirjeldab Euleri valem (Euler’s formula)

• Selle erijuhtu argumendi väärtuse φ = π korral tuntakse Euler’i
vastavuse nime all (Euler’s Identity) ja seda peetakse üheks (kõige) 
ilusamaks matemaatiliseks avaldiseks:

ejπ + 1 = 0 .
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𝑒j𝜑 = cos 𝜑 + j sin 𝜑 .



Kompleksarv vektorina

• Mistahes punkti tasandil ja seega ka 
mistahes kompleksarvu z võib käsitleda 
vektorina. Vektori alguspunkt on alati 
koordinaatteljestiku alguspunktis, lõpp aga 
kompleksarvule vastavas punktis tasandil. 

• Vektori koordinaadid on vastavalt 
kompleksarvu reaal- ja imaginaarosa (x, y).

• Vektori pikkus on kompleksarvu moodul |z| 
ja nurk polaartelje ja vektori vahel on selle 
kompleksarvu faas φ. 
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Faasor

• Kujutame ette, et meie vektor pikkusega |z| pöörleb ühtlase 
sagedusega f [s-1]vastupäeva. 

• Ühe pöörde tegemiseks kuluvat aega nimetame pöörlemisperioodiks
T = 1/f. Perioodi möödumisel on vektor tagasi algses asendis ja 
alustab uut pööret.

• Iga täispöörde tegemisel suureneb nurk (faas) 2π radiaani (täisringi 
360°) võrra. Ajaühikus läbitava nurga suurust nimetatakse 
nurksageduseks ω = 2πf. Nurksageduse mõõtühik on radiaani 
sekundis [s-1].

• Nurka φ0 vektori ja polaartelje vahel pöörlemise alghetkel t = 0 
nimetatakse algfaasiks. 
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Faasor

11



Harmoonilise signaali faasorkuju
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• Kõigest eelnevast lähtuvalt näeme, et harmoonilist võnkumist 
algfaasiga  φ0 , amplituudiga |z| ja ringsagedusega ω saab esitada 
sama ringsagedusega pöörleva vektorina ehk faasorkujul.

• Võnkumise ajaline kuju on vastava faasori projektsioon x –teljele ehk 
eksponentsiaalselt kujul kompleksarvu reaalosa:

𝑥 𝑡 = Re 𝑧 𝑒j(𝜔𝑡+𝜑0) = 𝑧 cos(𝜔𝑡 + 𝜑0) .

• Antud seost saab edaspidi kasutada arvutuste lihtsustamiseks. 



Harmoonilise signaali faasorkuju

• Võnkumise ajalise kuju võis ümber kirjutada kujul

𝑥 𝑡 = Re 𝑧 𝑒j(𝜔𝑡+𝜑0) = Re 𝑧 𝑒j𝜑0𝑒j𝜔𝑡 .

• Lineaarses keskkonnas levides signaali sagedus ei muutu. Seega võime 
ülaltoodud avaldisest eemaldada viimasele vastava osa ejωt. Järele 
jäänud, amplituudi ja faasi, sisaldavat osa nimetatakse signaali 
esituseks faasorkujul:

• Alaindeks „s“ aitab meeles pidada, et tegelikult on signaalil olemas ka 
sagedus (s = jω on süsteemiteooriast tuttav Lapalace’i teisenduse 
kompleksmuutuja).
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𝑥𝑠 = 𝑧 𝑒j𝜑0.



Teisendamine

• Ajalisel kujul antud signaalist

𝑢 𝑡 = 𝑈𝑚 cos 𝜔𝑡 + 𝜑0

saame faasori

𝑢𝑠 = 𝑈𝑚𝑒j𝜑0 .

• Signaali ajalise kuju saame, kui 
esmalt korrutame faasori läbi 
komplekseksponendiga ejωt ning 
seejärel leiame tulemuse reaalosa:

𝑢 𝑡 = Re 𝑈𝑚𝑒j𝜑0 ∙ ej𝜔𝑡 .
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Harmoonilised väljad 
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Harmoonilised väljad 

• Elektrivälja E = Exax korral eeldame, et tema x-telje suunaline 
komponent Ex on kujul

𝐸𝑥 = 𝐸 𝑥, 𝑦, 𝑧 cos 𝜔𝑡 + 𝜓 .

• Euleri valemist saime:

𝐸𝑥 = Re 𝐸 𝑥, 𝑦, 𝑧 𝑒j 𝜔𝑡+𝜓 = Re 𝐸 𝑥, 𝑦, 𝑧 𝑒j𝜓𝑒j𝜔𝑡 .

• Elektrivälja komponent Ex faasorkujul:

𝐸𝑥𝑠 = 𝐸 𝑥, 𝑦, 𝑧 𝑒j𝜓.

• Vektorina esitatult Es = Exsax.
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Faasorkujul signaali tuletis aja järgi

• Leiame esmalt osatuletise elektrivälja tugevuse x-komponendist

𝜕𝐸𝑥

𝜕𝑡
= 𝐸 𝑥, 𝑦, 𝑧

𝜕

𝜕𝑡
cos 𝜔𝑡 + 𝜓 .

• Saame tulemuseks

𝜕𝐸𝑥

𝜕𝑡
= − 𝜔𝐸 𝑥, 𝑦, 𝑧 sin 𝜔𝑡 + 𝜓 .

• Jätame selle tulemuse meelde ja liigume edasi järgmise slaidi juurde.
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Faasorkujul signaali tuletis aja järgi

• Nüüd alustame sama välja faasorkujul avaldisest Exs ja korrutame selle 
läbi kompleksmuutujaga s = jω, saame

j𝜔𝐸𝑥𝑠 = j𝜔𝐸 𝑥, 𝑦, 𝑧 𝑒j𝜓.

• Teisendame saadud tulemuse ajalisele kujule, ehk leiame saadud 
faasori reaalosa

Re j𝜔𝐸𝑥𝑠𝑒j𝜔𝑡 = 𝐸 𝑥, 𝑦, 𝑧 Re j𝜔𝑒j𝜓𝑒j𝜔𝑡 =
= 𝐸 𝑥, 𝑦, 𝑧 Re j𝜔𝑒j(𝜔𝑡+𝜓) =
= 𝐸 𝑥, 𝑦, 𝑧 Re j𝜔 cos 𝜔𝑡 + 𝜓 + j sin(𝜔𝑡 + 𝜓) .

• Näeme, et lõpptulemus on samuti: 

− 𝜔𝐸 𝑥, 𝑦, 𝑧 sin 𝜔𝑡 + 𝜓 .

18



Faasorkujul signaali tuletis aja järgi

• Näeme, et kui esitame signaali faasorkujul siis asendub osatuletise 
leidmine aja järgi lihtsalt faasori korrutamisega suurusega s = jω:

𝜕𝐸𝑥

𝜕𝑡
= −𝜔𝐸 𝑥, 𝑦, 𝑧 sin 𝜔𝑡 + 𝜓 = Re j𝜔𝐸𝑥𝑠𝑒j𝜔𝑡 .

• Teisisõnu kehtib järgmine ekvivalentsus: 

𝜕𝐸𝑥

𝜕𝑡
⟺ j𝜔𝐸𝑥𝑠 .

• Järgnevalt rakendame seda ekvivalentsust Maxwell’i võrrandite 
lahendamiseks.
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Faasorkujul Maxwell’i võrrandid vaakumis

• Vaakumis puuduvad laengud:
∇ ∙ 𝐄 = 0.

• Puuduvad ka magnetilised dipoolid:

∇ × 𝐄 = −𝜇0

𝜕𝐇

𝜕𝑡
.

• Vaakum on isolaator:

∇ × 𝐇 = 𝜀0

𝜕𝐄

𝜕𝑡
.

• Magnetvälja jõujooned on kinnised:
∇ ∙ 𝐇 = 0

• Gaussi seadus faasorkujul:
∇ ∙ 𝐄𝐬 = 0.

• Faraday seadus faasorkujul:

∇ × 𝐄𝐬 = −j𝜔𝜇0𝐇𝐬.

• Ampere’i seadus faasorkujul:

∇ × 𝐇𝐬 = j𝜔𝜀0𝐄𝐬.

• Gaussi seadus magnetvälja kohta:
∇ ∙ 𝐇𝐬 = 0.
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Lainevõrrand

• Nüüd saame tuletada statsionaarset harmoonilist signaali kirjeldava 
lainevõrrandi.

• Leiame esmalt Faraday seaduse mõlemast poolest rootori :

∇ × ∇ × 𝐄𝐬 = −j𝜔𝜇0∇ × 𝐇𝐬 .

• On teada, et mistahes vektorvälja G korral kehtib:

∇ × ∇ × 𝐆 = ∇ ∇ ∙ 𝐆 − ∇2𝐆 .

• Viimast asjaolu esimese avaldise peal rakendades saame, et 

∇ ∇ ∙ 𝐄𝐬 − ∇2𝐄𝐬 = −j𝜔𝜇0∇ × 𝐇𝐬 .

21



Lainevõrrand
• Kuna vaakumis puuduvad elektrilaengud, siis on Gaussi seaduse kohaselt 

elektrivälja divergents seal null (∇ ∙ 𝐄𝐬 = 0), seega võrrand lihtsustub kujule:

−∇2𝐄𝐬 = −j𝜔𝜇0∇ × 𝐇𝐬.

• Ampere’i seaduse ∇ × 𝐇𝐬 = j𝜔𝜀0𝐄𝐬 rakendamine võimaldab jõuda, Helmholtzi
võrrandi nime all tuntud, lõpliku tulemuseni :

∇2𝐄𝐬 = −𝜔2𝜇0𝜀0𝐄𝐬 = −𝑘0
2𝐄𝐬 .

• Kus konstant 

𝑘0 = 𝜔 𝜇0𝜀0 =
𝜔

𝑐
=

2𝜋

𝜆

on lainearv vaakumis.
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Lainevõrrand

• Faasorkujul võrrandi puhul oli ajas tuletise leidmiseks vajalik suuruse läbi 
korrutamine kompleksmuutujaga s = jω. 

• Helmholtzi võrrandis
∇2𝐄𝐬 = −𝜔2𝜇0𝜀0𝐄𝐬

olev kordaja –ω2 = (jω)2 vastab seega teist järku osatuletisele aja järgi. 
Lainevõrrandi ajaline kuju oleks seega

∇2𝐄 = 𝜇0𝜀0

𝜕2𝐄

𝜕𝑡2
.

• Tegemist on teist järku nelja muutujaga osalise diferentsiaalvõrrandiga. 
Sellised võrrandid kirjeldavad ruumis liikuvaid laineid, sellest ka nimetus 
lainevõrrand.
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Lainevõrrand

• Saadud faasorkujul lainevõrrandi x - komponent on kujul
∇2𝐄𝐱𝐬 = −𝑘0

2𝐄𝐱𝐬 .

• Laiendatuna osutub viimane teist järku (kolme muutujaga) osaliseks 
diferentsiaalvõrrandiks

𝜕2𝐸𝑥𝑠

𝜕𝑥2
+

𝜕2𝐸𝑥𝑠

𝜕𝑦2
+

𝜕2𝐸𝑥𝑠

𝜕𝑧2
= −𝑘0

2𝐸𝑥𝑠.

• Kui eeldame, et Exs muutub ainult z telje suunas (mitte x ega y), saame 
lihtsustuse tulemusena tavalise diferentsiaalvõrrandi

𝑑2𝐸𝑥𝑠

𝑑𝑧2
= −𝑘0

2𝐸𝑥𝑠 .
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Lainevõrrand

• Viimase diferentsiaalvõrrandi üheks võimalikuks lahendiks on 

𝐸𝑥𝑠 = 𝐸𝑥0e−j𝑘0𝑧.

• Arvestades, et tegemist on ajas muutuva väljaga (ejωt ) saame 
faasorkujul lahendist avaldada elektrivälja ajalise kuju

𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥0 cos 𝜔𝑡 − 𝑘0𝑧 .

• Näeme, et tegemist on z-telje positiivses suunas kulgeva harmoonilise 
lainega.
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Tasalaine omadusi

• Kahe lähima, samas faasis punkti omavahelist kaugust ruumis, laine 
kulgemise suunas (z –telje sihis) nimetatakse lainepikkuseks

𝜆 =
𝑐

𝑓
=

2𝜋

𝑘0
 .

• Laine kannab ruumis kulgedes levisuunas energiat, seetõttu 
nimetatakse selliseid laineid kulglaineteks (traveling wave). 

• Kui lainearv on negatiivne, siis on laine kulgemise suund vastupidine.

• Tasalaine korral on  x - y tasandil z = const kõikidel punktidel sama faas. 
Praktikas ei ole selline laine võimalik, kuid allikast kaugel on näiteks ka 
keralaine peaaegu tasane, seega on mudelil siiski reaalne väärtus. 
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Laine magnetvälja komponent
• Faraday seaduse ∇ × 𝐄𝐬 = −j𝜔𝜇0𝐇𝐬 abil saame leida meie lihtsustatud 

juhu jaoks, et :
𝑑𝐸𝑥𝑠

𝑑𝑧
= −j𝜔𝜇0𝐻𝑦𝑠.

• Mille lahendiks on

𝐻𝑦𝑠 = 𝐸𝑥0

𝜀0

𝜇0
𝑒−j𝑘0𝑧.

• Magnetvälja y- komponendi ajaline kuju on seega:

𝐻𝑦 𝑧, 𝑡 = 𝐸𝑥0

𝜀0

𝜇0
cos 𝜔𝑡 − 𝑘0𝑧 .
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Vaakumi karakteristlik impedants

• Elektri- ja magnetvälja tugevused on vaakumis (kaovabas keskkonnas) 
alati samas faasis. Ruumiliselt on need väljad alati omavahel risti.

• Elektri- ja magnetvälja komponentide suhe on konstantne:

𝐸𝑥

𝐻𝑦
=

𝜇0

𝜀0
.

• Mainitud suhet nimetatakse vaakumi karakteristlikuks impedantsiks η0. 
Viimase väärtus on ligikaudu 120π (377) Ω.
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Ühtlane tasalaine vaakumis

29Joonis: W.H. Hayt, J.A. Buck. Engineering Electromagnetics, kuues trükk.



Katseline tõestus
• Elektromagnetlainete olemasolu tõestas katseliselt Heinrich Rudolf 

Hertz (1857-1894) 1879 aastal.
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Materjalid

• W.H. Hayt, J.A. Buck. Engineering Electromagnetics. 6th ed. Ch 11.1 
Wave propagation in free space.

31


	Slide 1: 12. Ühtlane tasalaine vaakumis
	Slide 2: Maxwell’i võrrandid vaakumis
	Slide 3: Kompleksarvud
	Slide 4: Kompleksarvude kujutamine
	Slide 5: Kompleksarvu eksponentsiaalne kuju
	Slide 6: Kompleksarvu esitusviisid
	Slide 7: Kompleksarvu trigonomeetriline kuju
	Slide 8: Euleri valem
	Slide 9: Kompleksarv vektorina
	Slide 10: Faasor
	Slide 11: Faasor
	Slide 12: Harmoonilise signaali faasorkuju
	Slide 13: Harmoonilise signaali faasorkuju
	Slide 14: Teisendamine
	Slide 15: Harmoonilised väljad 
	Slide 16: Harmoonilised väljad 
	Slide 17: Faasorkujul signaali tuletis aja järgi
	Slide 18: Faasorkujul signaali tuletis aja järgi
	Slide 19: Faasorkujul signaali tuletis aja järgi
	Slide 20: Faasorkujul Maxwell’i võrrandid vaakumis
	Slide 21: Lainevõrrand
	Slide 22: Lainevõrrand
	Slide 23: Lainevõrrand
	Slide 24: Lainevõrrand
	Slide 25: Lainevõrrand
	Slide 26: Tasalaine omadusi
	Slide 27: Laine magnetvälja komponent
	Slide 28: Vaakumi karakteristlik impedants
	Slide 29: Ühtlane tasalaine vaakumis
	Slide 30: Katseline tõestus
	Slide 31: Materjalid

