MICROPROCESSOR SYSTEMS
(IAS0430)

Department of Computer Systems
Tallinn University of Technology

RECAP WITH EXAMPLE...1

= What is this circuit?

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

W ~ -— 0

W W - 0

1]

;

,%

L

\t4\Y

RECAP WITH EXAMPLE...1

= What is this circuit?
= Jtis a bus made of 4 MUX

= How many MUX we need to
transfer one bit?

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

W ~ -— 0

,%

w W — o

L

|
A0S

;

PR\

RECAP WITH EXAMPLE...1

= What is this circuit?
= Jtis a bus made of 4 MUX
= How many MUX we need to
transfer one bit?
= We need one MUX to
transfer one bit

= Which Register is transfers
on BUS when x is 0?

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

W ~ -— 0

W W - 0

1]

;

,%

Ty

L

RECAP WITH EXAMPLE...1

= What is this circuit?
= Jtis a bus made of 4 MUX
= How many MUX we need to
transfer one bit?
= We need one MUX to
transfer one bit

= Which Register is transfers
on BUS when x is 0?

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

W ~ -— 0

W W - 0

1]

;

,%

Ty

L

RECAP WITH EXAMPLE...1

= What is this circuit?
= Jtis a bus made of 4 MUX
= How many MUX we need to
transfer one bit?
= We need one MUX to
transfer one bit
= Which Register is transfers
on BUS when x is 0?
= R1

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

W ~ -— 0

W W - 0

1]

;

,%

Ty

L

RECAP WITH EXAMPLE...2

= What is this circuit?
= Jtis a BUS

= What happens if

SO =0and S1 =07?

w
-

a
—9
4

3 0 J 2 0

Pttt

D2C2B2 A2

D2D1 D0 c2cCci1co
t 1 r QK I } ' CIK

umn<_j Abit Register C

TECH TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE...3

= What is this circuit?

= Jtis a BUS but made of
buffers

= What happens if
SO=1and S1 =17

SO
S1

TECH TALLINN UNIVERSITY OF TECHNOLOGY

AD
BO
Co
DO

Bus line for bit 0

v

Y

WN = O

RECAP WITH EXAMPLE...4

= Which one is immediate and
which one is indirect addressing mode?

= How many bits has the instruction
format of this example?

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

15 14 12 11
(a) Instruction format
Memory Memory
22| o0]aop| as 1 |app| 300

300 1350

Operand
1350 Operand

. P

RECAP WITH EXAMPLE...5

= Introducing a couple of new registers in CPU
= We already know ACCU (AC), PC and IR

Register |function

DR
AR
ACCU
IR

PC

TR
INTR
OUTR

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

Store the operand

Store memory address
Hold result

Store instruction code
Store address of instruction
Store temporary data

Store input character

Store output character

RECAP WITH EXAMPLE...5

= Introducing a couple of new
registers in CPU

= We already know ACCU (AQC),
PC and IR

= Which element’s input is not
connected to bus?

= What does that MUX do ?

TECH TALLINN UNIVERSITY OF TECHNOLOGY

>

RECAP WITH EXAMPLE...5

Introducing of a couple of new
registers in CPU

= We already know ACCU (AQC),
PC and IR
= Which element’s input is not
connected to bus?
= ALU
= What does that MUX do?

It determines which register
transfer data on the bus

= What is the purpose of Clock?

TECH TALLINN UNIVERSITY OF TECHNOLOGY

K

b Clock

RECAP WITH EXAMPLE...5

= Introducing of a couple of new
registers in CPU

= We already know ACCU (AQC),
PC and IR

= Which element’s input is not
connected to bus?

= ALU

= What does that MUX do?

= Jt determines which register
transfer data on the bus

= What is the purpose of Clock?

= Each operation including
memory read/write, putting
data from registers to bus is

done in 1 or more clock cycle
TALLINN UNIVERSITY OF TECHNOLOGY

TECH

Memory unit

4096 x 16

| 1
Write Read

LD INR CLR

1 AR e'!

A__PC A
'rl |
LD INR CLR

1 DR

LD IR CLR

Arth
Logic

EAC

b MR CLR

L b Clock

RECAP WITH EXAMPLES...6

TECH

= Why the following operations can not be done in one clock cycle in this

architecture? Can anyone solve it
for the next lesson?

= IR <- M[PC]
= AC<-AC+ TR
= DR <- DR +AC

TALLINN UNIVERSITY OF TECHNOLOGY

S2 —
S1 —

S0

RECAP...6

= If you would like to know more on Control Unit check out this link:
= https://www.youtube.com/watch?v=dXdoim96v5A

TECH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 1
= Believe it or not, we have our own ISA already made!

TECH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA -1

= Believe it or not, we have our own ISA already made!
= We created an ISA last class. A fully functioning ISA for the 8-bit Dummy CPU.

11 11111 1 1 1
op code |id| operand

mm-

Load to accum LD # 5 00110101
010 ST Store to memory ST$?2 01000010
011 ADD Add value to value in accum ADD # 10 01111010
100 SUB Subtract value from value in accum SUB # 4 10010100
101 EQ Checks in value is equal to value in accum, if true, EQ #5 10110101

skip next instruction
110 JP Set value in PC to value JP$8 11001000
111 HE Halt Execution HE 11100000

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA -1
= Subjects for modifications — how to interpret the id-bit?

= For instance, "LD $ 5" [00100101] - Load to accum from memory, address in word 5.

11 1111 11
op code Gd] operand

mm-

Load to accum LD # 5 00110101
010 ST Store to memory ST$?2 01000010
011 ADD Add value to value in accum ADD # 10 01111010
100 SUB Subtract value from value in accum SUB # 4 10010100
101 EQ Checks in value is equal to value in accum, if true, EQ #5 10110101

skip next instruction
110 JP Set value in PC to value JP$8 11001000
111 HE Halt Execution HE 11100000

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

REAL ISA FORMAT OF RISC-V AND MIPS PROCESSOR

Instructions are divided into three types: R (register), | (immediate), and J (jump). Every instruction starts with a 6-bit opcode. In addition to the opcode, R-type instructions specify three
registers,[2] a shift amount field, and a function field; I-type instructions specify two registers and a 16-bit immediate value; J-type instructions follow the opcode with a 26-bit jump target.

The following are the three formats used for the core instruction set:

Type | -31- format (bits) -0-
R opcode (6) | rs(5) rt(5) | rd(5) shamt (5) | funct (6)

I opcode (6) | rs(5) rt(5) immediate (16)
J opcode (6) address (26)
32-bit RISC-V instruction formats
Bit
Format - I T T T T
31 30|29 28 27 ‘ 26 ‘ 25 24 23 ‘ 22 ‘ 21| 20 (19|18 (17 |16 |15 |14 |13 (12 |11 |(10(9 (8| 7 (6(5(4(3(2(1 (0

Register/register funct7 » » rle irs1 funct3 rd obcode
Immediate imm[11:0] rsi funct3 rd opcode
Upper immediate imm[31:12] 7 rd opcode
Store imm[11:5] rs2 rsi funct3 imm([4:0] opcode
Branch [12] imm[10:5] ‘ rs2 rsi funct3 imm[4:1] [11] opcode
Jump [20] imm[10:1] [11] imm[19:12] rd opcode

e opcode (7 bits): Partially specifies which of the 6 types of instruction formats.
e funct7, and|funct3 (10 bits): These two fields, further than the opcode field, specify the operation to be performed.
e rs1, rs2, or rd (5 bits): Specifies, by index, the register, resp., containing the first operand (i.e., source register), second operand, and destination register to which the computation result will be directed.

TECH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 1
What is the Instruction Set Architecture?

B
B

=
m
O

The ISA is the implementation architecture of the computer.

It dictates everything inside the computer processor, memory, and even what
external devices can connect to it.

It is the single most important factor in designing a computer.
= It decides how the CPU is built.
= Tt defines the functions the CPU is capable to perform
= Jt defines what types of data the CPU can process.
The importance of the ISA comes from it being the vocabulary of the CPU.

= The CPU internal circuitry is built to translate the instruction into functions and
operations.

= Since the CPU internal circuitry is based on the instructions, the ISA becomes the
only thing that the CPU understands.

The ISA is a list of functions and operations that the CPU can perform and
describes the type of data and what resources needed to complete these
functions and operations.

H TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 2
= What are the important things to know in order to make an ISA?

= Must keep in mind at all times that any decision made, becomes a constraint.
E.g. When choosing the size of any part of the ISA, the size is a constraint on other

parts since the instruction length is finite.
= When we choose 3-bits for op code in the Dummy CPU ISA 00100101

We limited ourselves to only 5 bits left that we can use for other things.
This also limited us to only 8 possible operations to implement.

= Decisions are double edged swords.
= There are infinite designs possible, but the majority are too complex to be practical.

= Choose simplicity over everything.
= The simpler the ISA, the easier it is to design a CPU that executes it.

= Accept that all designs have flaws.
= What types of resources is your ISA going to use:
= How many register? ALU functions? Memory?

= Any external devices?
= Always be prepared to change your ISA later!

TAL TALLINN UNIVERSITY OF TECHNOLOGY

TECH

THE ISA - 2

= What to think about when designing an ISA?
= How many registers I want to use?
= Registers are fast and take very small space, but have small capacity as well.
= More registers, means less access to slow memory — Better performance.
= Less registers, means less complexity — better applicability.
= What Bus am I using, how big?

= The bus carries data, instructions, and control signals. However, an 8 bit ISA needs
an 8-bit bus, a 16-bit ISA needs 16-bit bus.

= The bus takes a large area on chip. Smaller bus means more area of other things.
= But, a larger bus, means more bits space for functionality and data transmitted.
= What operation do I need to perform?
= The ISA must take in consideration how do we intend to use the CPU?
= What operation does it make sense to implement?
= What functions those operations must have?
= What do I operate on?

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 2

= What to think about when designing an ISA?
= What types of operands will I have?
= Addresses? Text? Integers? Floating Point numbers?
= Do I need to create different operations for different operands?
= Will need different instruction formats?
= How can I divide the instruction in different formats for different operations?
= What machines do I want to implement this ISA on!
= Single core? Multi core?
= PC? Game console? Calculator?

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 2

= 32 bit processor and 64 bit processor?
= https://www.computerhope.com/issues/ch001498.htm

TECH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA -3
= There are 2 ISAs we will explore:

= RISC:

= |Lets say we want to multiply 2 and 5 using an operation

Stands for Reduced Instruction Set Computer.

It is designed to interpret instructions at 1 or 2 cycle at a time.
Instructions do one specific thing. Decoding process is simple.
RISC is software friendly. It gives more room for programmers to be creative. Meaning

that most of the work is done on software level.

The CPU design is very simple. This allows more on-chip space for resources (reg, mem).

PROD.

TAL
TEC

We will need to load 2 and 5 to registers A and B
We then multiply registers A and B using PROD

Then we store value from the product in reg A to
the memory location 10

This takes 4 instructions.

H TALLINN UNIVERSITY OF TECHNOLOGY

v

Instruction

Decode

I
LOAD A, 10

LOAD B, 11

PROD A, B

v

STORE 10, A

Control Unit

v

0|0 |m |3

%-P Execution unit

[S111)%)

s ey e e P e e R Ll ES B T N B

THE ISA -3
= There are 2 ISAs we will explore:

= RISC:

TA

L

TEC

RISC uses a compiler that converts high level languages into instructions.

The RISC compiler does most of the work.
This takes a long time, making it a slow conversion.

Although programs are simple and straight forward, those programs are usually

very resource hungry and might take longer to execute.
More instructions, means programs take more space in memory.

It needs a collection of general purpose registers to complete operations.

v

Instruction Decode

I
LOAD A, 10

LOAD B, 11

PROD A, B

v

STORE 10, A

Control Unit

v

0|0 |m |3

%-P Execution unit

[S111)%)

H TALLINN UNIVERSITY OF TECHNOLOGY E
I

s ey e e P e e R Ll ES B T N B

THE ISA -3

= CISC:
= Stands for Complex Instruction Set Computer.
= It is designed to complex tasks with the least possible number of instructions.
= Decoding process is complex and need more space on-chip to be implemented.

= CISC is hardware based. The hardware is designed to “understand” instructions and
execute a series of operations using one instruction only.

= The CPU design is very complex. This allows less on-chip space for resources (reg, mem).

= |Lets say we want to multiply 2 and 5 using an operation

MUTL.
= We only need to specify the operations MULT, then |
point out to where in memory we are storing 2 and 17 MULT 10, 11
5 Microcode converter
' |
= The instruction is then is translated to microcode Microcode to microinstruction
then to microinstructions, then it is executed as — ! :
microinstruction execution
needed. unit

[S111)%)

D(')UJI?—L

%—) Execution unit

TECH

TAL TALLINN UNIVERSITY OF TECHNOLOGY E

s ey e e P e e R Ll ES B T N B

THE ISA -3
= CISC:
= CISC allows compilers to do little work in compiling high level languages.

= The use of microcode allows the majority of the work to be done on the
hardware level.

= Microcode is then converted in microinstructions, similar to regular RISC instructions
and executed in a specialized execution unit.

= CISC has great advantages when it comes to complex operations that involve a large
number of resources to complete (mathematical, graphic, etc.)

= However, as a trade off to that, registers are more likely to be used per instructions
and are refreshed after each instruction is executed.

= But, CISC takes little space in memory as the number of
instructions is low.

I
MULT 10, 11

h 4

Microcode converter

Microcode to microinstruction

microinstruction execution

unit
I

TAL

[S111)%)

%—) Execution unit

DOUJI'—L

TECH TALLINN UNIVERSITY OF TECHNOLOGY E

s ey e e P e e R Ll ES B T N B

THE ISA...

= s ARM processor RISC or CISC?
= What about intel?

= Does Apple use ARM or Intel?

= Where Intel is still popular?

= RISC, CISC and RISC V:

= https://www.per-international.com/news-and-insights/risc-vs-cisc-
architecture-which-is-better

TECH TALLINN UNIVERSITY OF TECHNOLOGY

Attribute

RISC

CISsC

Evaluation

Reason

Evaluation

Reason

Instruction decoding

Low

Instructions are hardcoded according to the logic
used for designing the CPU.

Complex

Instructions are implemented as functions not as
logical operation. Those functions are then executed
using a complex internal system.

Registers Higher number Simple CPU design take small area of the chip, whichjLower nhumber Complex CPU design leaves little room for on-chip
allows more area for on-chip registers and on-chip registers.
memory.
Cycles per One/two cycles per JInstructions are simple and easy to execute. Some |[Different cycle times [Instructions are complex and do multiple tasks
instruction instruction require longer time, but cycle times are uniform.
Memory Needs more More instructions are needed to do complex tasks, Needs less memory JOne instruction does multiple tasks which reduces

memory meaning that more space is required to store these the total number of instructions to be stored in
instructions. memory.
Memory access [Simple Limited number of memory access modes. Complex Has much more ways of accessing memory,
especially indexed accesses.
Instruction Low Hardware is built to accommodate instructions High Instructions are designed to accommodate
complexity hardware
Pipelining Possible Because the number of cycles needed for an Hard Instructions have no uniform time of execution,
instruction can be easily divided into stages of making pipelining hard and almost impossible.
execution.
Operational work [Less Registers hold on to information after the execution [More Registers are emptied after each instruction,
of an instruction is finished. This information is then requiring all data to be written into memory and
used by other instructions reloaded to registers multiple times.
Clocks Single clock All parts of the CPU operate on the same clock cycle JMulti-clock The complexity of the CPU design requires different

parts of the CPU to operate on different frequencies.

Design Target

Reduce the number of cycles per instruction at the cost of total number of

instructions needed to execute a program. Less cycles and more memory

Reduce the number of instructions needed to execute a program at the
cost of having different cycles per each instruction. More cycles and less

memory.

THE ISA -4

= Performance Evaluation

= Performance evaluation is used to measure the time needed for a program to finish
executing.

= What do we need to account for when we measure time per program?

TECH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA -4

= Performance Evaluation

= Performance evaluation is used to measure the time needed for a program to finish
executing.

= What do we need to account for when we measure time per program?
= Time needed to finish a cycle (Time/Cycle) or (T/C)
= The number of cycles per instruction (Cycle / Instruction) or (C/I)
= The number of instructions per program (Instruction / Program) or (I/P)

time time cycles instructions

X = - X
program cycle instruction program

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 4
= Performance Evaluation

= Performance evaluation is sued to measure the time needed for a program to finish
executing.

= What do we need to account for when we measure time per program?
= Time needed to finish a cycle (Time/Cycle) or (T/C)
= The number of cycles per instruction (Cycle / Instruction) or (C/I)
= The number of instructions per program (Instruction / Program) or (I/P)

time time cycles instructions

X = - X
program cycle instruction program

= If instructions have different number of cycles, each instruction must be
accounted according to its cycle time.

= Lets take an example.

¥EEH TALLINN UNIVERSITY OF TECHNOLOGY

LD $o

ADD $1

THE ISA - 4
= Lets take the following program and table:
time time y cycles instructions
program cycle instruction program

= A cycle takes 1.2 ns to complete.

TECH TALLINN UNIVERSITY OF TECHNOLOGY

EQ #2

JP $2

Operation

LD #5
LD $5
ST #2
ST $2
ADD #10
ADD $10
SUB #4
SUB $4
EQ #5
JP $8

HE

H = = N B N B B B2 N &

Operation

THE ISA - 4 —
= Lets take the following program and table: 0 LD $0 ST #2
. .)) 1 ADD $1 ST $2
time time cycles instructions Jr—
= X X 2 EQ #2
program cycle instruction program 3 1P $2 ADD $10
SUB #4

= A cycle takes 1.2 ns to complete.

SUB $4
EQ #5

= We look for the instructions we are that take similar number of cycles
= LD $0and ADD $1 take 2 cycles, 2 instructions that take 2 cycles
= EQ #2and JP $2 take 1 cycle, 2 instructions that take 1 cycle

JP $8
HE

TECH TALLINN UNIVERSITY OF TECHNOLOGY

LD #5

H = = N B N B B B2 N &

Operation

THE ISA - 4 —
= Lets take the following program and table: 0 LD $0 ST #2
. .)) 1 ADD $1 ST $2

time time “ cycles instructions N B #2 Jr—

program cycle instruction program 3 1P $2 ADD $10

SUB #4

= A cycle takes 1.2 ns to complete.

SUB $4
EQ #5

= We look for the instructions we are that take similar number of cycles
= LD $0and ADD $1 take 2 cycles, 2 instructions that take 2 cycles
= EQ #2and JP $2 take 1 cycle, 2 instructions that take 1 cycle

JP $8

HE

= Now, we need to calculate the time need for instructions with different cycles
= Number of instructions that take 2 cycles (C/I) is 2 per program (I/P)
= Which means that they take: 1.2 ns * 2 * 2 = 4.8 ns

TECH TALLINN UNIVERSITY OF TECHNOLOGY

LD #5

H = = N B N B B B2 N &

THE ISA - 4
= Lets take the following program and table:
time time y cycles instructions
program cycle instruction program

= A cycle takes 1.2 ns to complete.

= We look for the instructions we are that take similar number of cycles
= LD $0and ADD $1 take 2 cycles, 2 instructions that take 2 cycles
= EQ #2and JP $2 take 1 cycle, 2 instructions that take 1 cycle

0 LD $o
1 ADD $1
2 EQ #2
3 JP $2

Operation

= Now, we need to calculate the time need for instructions with different cycles

TAL
TECH

TALLINN UNIVERSITY OF TECHNOLOGY

Number of instructions that take 2 cycles (C/I) is 2 per program (I/P)
Which means that they take: 1.2 ns* 2 * 2 =4.8 ns

Number of instructions that take 1 cycle (C/I) is 2 per program (I/P)
Which means that they take: 1.2 ns* 1 * 2 = 2.4 ns

The total timing needed to finish this small program is 4.8 + 2.4 = 7.2 ns

LD #5
LD $5
ST #2
ST $2
ADD #10
ADD $10
SUB #4
SUB $4
EQ #5
JP $8

HE

H = = N B N B B B2 N &

EXAMPLES: INTEL 8080 / 8085 / 8086 (8088)

Intel 8080 Architecture t D0-D7 bidirectional

Data Bus
Buffer/Latch

8 Bitinteral Data Bus

Flag
Flip Flops

Accumulator

L]

Temp.
Register

Instruction
Register

Data Bus

Adjust

Timing and Control
DataBus Interrupt Hold W
WRITE _ Control __ Control

Frirtd

#WR DBIN INT INTE Hold Hold Walt Ready Sync Ph1 Ph2 Reset

Ack

i8080

Multiplexer
Accumulator
Latch L o 3
Instruction Temp. Reg. | Temp. Reg
Decoder and B c
Machine B Reg. Reg.
@
Cycle @ D E
Encoding Pl Reg. i
k) H L
®
® Reg. Reg.
o Stack Pointer
Program Counter
- Incrementer/Decrementer
Decimal Address Latch

Hol alt
e MF—‘

AO-A15
Address Bus

Cs

DS

SS

ES

IP

AH

AL

INTA# RST 6.5 TRAP sSID SOD Intel 8085 Microarchitecture
INTR I RST55 1 RST75 l l
]) i
Interrupt Control Control
8 Bit internal Data Bus.
Accumulator Temp. =
(8 Bit) Register Instruction
Register
3Bt (8 Bit)
B ng. c Reg.
Flag Register l —;’R:’]
(8 Bit) @81 (@8it)
Instruction [Hreg. LReg. 8Bit
Decoder and 2| 68 (8 Bit)
Machine & E ‘(“;“s ;)""
Cyd? Program Counter
Encoding (16 Bit)
Incrementer/Decrementer
Address Laich
Address Bus (Low).
Address Bus (High). 8Bt
8 Bit
o Timing and Control 'l
clle RESET DMA STATUS CONTROL | Address Buffer | | Data/Address Buffer |
X1 GEN L) e C—

REREEE :
b g
CLK OUT RESET OUT HLDA SO S1 g x |E &S
RESET IN# HOLD 2| reroy |Z |2 g

Decoder

MEMR# IOR#

Address
Latch

AB-A15 A0-A7 Do-D7
Address Bus Address Bus Data Bus

i8085

TALLINN UNIVERSITY OF TECHNOLOGY

BH

BL

CH

CL

DH

DL

SP

BP

Sl

DI

i8086/88

source: Wikipedia.org

EXAMPLES: INTEL 80186 / 80286

Intel 80186 / 80188 architecture

INT3/INTAT#IRQ
A INT2/INTAO# TMR OUT 1 TMR OUT 0
Vee GND A A
A INTUSELECT® 1mrin | TMRIN
{ D I(':LKOUT l l NMI A INTO 1 0
A
Programmable
Timers
'E ' 0 1 2
. > ! Max. Count
: Progr Register B
: Interrupt Max. Count
RES# > Clock pru Controller Register A
RESET = Generator 16-Bit ' Control Registers
General :
Purpose : Control 16 Bit
Registers ; Registers Count Register

DRQO
{— — DRQ1
S0#-52# « Chip-Select Programmable
Unit DMA Unit
0 1
=
SRDY > 20%
Bus Interface Sodree Pomters
ARDY Unit 20.8it
i Destination Pointers
TEST# > =l .
Registers 16.8it
HOLD Transfer Count
6-Byte Programmable +
HLDA Prefetch Control Control
= Queue Registers —| Regllsters
y DEN# ALE ucs# Y PCS6#/A2
LOCK# y WR# Lcs# || PCS5#A1
DTIR# RO# ADO A16/S3:
SHE#/S7 2 9
(s7) AD15 A19/S6 MCS0#-3 PCSO0#-4 .
(AD0-AD7) i80186
(A8-A15)

AL
EC

TALLINN UNIVERSITY OF TECHNOLOGY

Intel 80286 architecture

-
Address Unit (AU)

180286

1
:
: Address Latches A=Ay
{ Physical andDovars ! BHE#, M/IO#
' Address 4
: Adder ' ! .
¢ Segment : ! Ex T PEACKE
1
Offset F 4 & 4
g has | : ' Interface |ag— PEREQ
' Segment Limit | Segment q 1 1
! -
| Checker Sizes ' y - READY#, HOLD
1 1 1
: ' ' BusControl : S1#, SO#, COD/INTA#
' 1 h LOCK#, HLDA
1 : :
1 1
: Data Tranceivers D45 — Do
' 1 1]
' 1 1 1
... ___. i 1 '
L 8 Byte]
P = [l Prefetch)
' ' 1 Queue !
L g ' '
: : ' Bus Unit (BU) 1
1 1
' TRt
1 1
L: 1
£ i Frmmm e e , [€——— RESET
1 ' L '
_ h ‘ cLK
i Registers | control ' ' - ™
' ! | SDecoded | 0 ction | p——>Vss
f Instruction e ,
' ' Queue 1 f—V,
: AA LA b ' °
1 Execution Unit (EU) A i Instruction Unit (1U) | a——3» CAP
i i e e ok v e B ke v e e i vt T i e i e B e B B 1 e e .. .- --------eeeeeeseeeeee- a
NMI BUSY
INTR ERROR

source: Wikipedia.org

EXAMPLES:

INTEL 80386 / 80486

Segmentation Unit Paging Unit Bus Control
32 34
< HOLD, INTR, NMI,
3-Input — Request e
Effective Address Bus ‘Adder Adder § . Prioritizer ERROR, BUSY,
RESET, HLDA
32 32 9
Effective Address Bus Discriptor Page ;
Cache H _
) = £
a < H
Protection ——N| Limitand H L C;nlr_zl and /\; B
Test Unit _|/ Attribute E _I/ ttribute s
PLA 3 PLA |\ E
A g A
£ §o U\ Address BEO# - BE3#,
w b / Driver A2-A31
" @
2 -}
©
= =
] r A S Pipeline / M0, DICH,
\ E Internal Control Bus g :> Bus Size WRLOCKE
8 Y - 3 Control ADS#, NAY,
= = BS16#, READY#
= k3 32
Barrel Shifter, @ Multiplexer /
Adder |:> 3 ;‘,> Transceivers DOl
Status ©
Flags Decode and 4 A
Sequencing
Multiply / Instruction LA Prefetcher / /‘
Divide Decoder _\/ Limit Checker \J—
Code
Stream
e [A— L Contral | 3Decoded |A_cl jopcode
Register File ROM Instruction Q
Queue | ueue
ALU Control 7
ALY Instruction Instruction Prefetch
Control Predecode

32

Dedicated ALU Bus

PLA: Programmable Logic Array

TAL
TECH

i80386

TALLINN UNIVERSITY OF TECHNOLOGY

Intel 80486DX2 Architecture

Micro-Instruction

64 Bit Interunit Transfer Bus

PCD
PWT o
Barrel Segmentation
Shifter Unit
Register Descriptor Physical
File — Registers Address
Limit and Translation
ALU Attribute Lookaside
PLA

Control &
FPU Protection
Test Unit
Decoded
Floating Instruction Path
Point Control
Register ROM
File

Instruction
Decode

Displacement Bus

Code Stream

180486

Cache
Unit

8 KiB
Cache

Prefetcher

32 Byte Code

_ Queue

(2 x 16 Byte)

Core
Clock
Clock Clock
< Multiplier <
A31-A2,
Address BE3# - BEO#
Divers: {—
Write Buffers
4 x32
Data Bus D31-D0
Tranceivers (I
Bus Control ADS#, W/R¥, DIC#, M/IO#,
PCD, PWT, RDY#, LOCK#,
PLOCK#, BOFF#, A20M#,
L | BREQ, HOLD, HLDA, RESET,
SRESET, INTR, NMI, SMi#,
SMIACT#, FERR#, IGNNE#,
Request STPCLK#
Sequencer _
Burst Bus BRDY#, BLAST#
Conirol | (o
Bus Size BS16#, BS8#
Control |
KEN#, FLUSH#, AHOLD,
Cache EADS#
epircl | (—
Parity Generation DP3 - DP0. PCHK#
and Control |
Boundary
Scan TCK, TMS, TDI, TDO
Control (N

source: Wikipedia.org

EXAMPLES: INTEL PENTIUM MMX

AL

T
TECH

Control

64 Bit
Data Bus

32 Bit
Address
Bus

Control

Data

Control

Branch
Target
Buffer

¥

!

& Target Addr.

Intel Pentium MMX Microarchitecture

Control

Prefetch TLBI ‘Code Bache
Address
g 16 KBytes
$128
In;tryction Prefetch Buffers Contal
oltes Instruction Decode > ROM
J |
\ 4 \
Control Unit =
A 3 V-Pipeline
U-Pipeline Connection
= Connection
<« Address Address >
Generate Generate
(U Pipeline) | (Y Pipeline)

DP Logic
>
!‘g
>
e
[&]
&
@
>
Bus Page
Unit | Unit
32
644
APIC
>
64 Bit 32 Bit
Data Address
Bus Bus

Data Cache

16 KBytes

)

]

TALLINN UNIVERSITY OF TECHNOLOGY

Register File

source: Wikipedia.org

128 Entry 32 KB Instruction Cache | _
UL {8 we) Shared Bus
] _ '
EXAMPLES: INTEL CORE2 mrac
/ 32 Byte Pre-Decode,
_ Fetch Buffer 4
lnstmdiop “* 6 Instructions
Fetch Unit 18 Entry
i Instruction Queue
Y ¥ J
Micro- | |[Complex | | Simple || Simple || Simple Y
code Decoder | | Decoder | |Decoder | | Decoder
I—;‘"4 pops “»1upop “1pop 1 pop
Y y y
l 7+ Entry pop Buffer Shared
“\ 4 pops > L2 Cache
Register Alias Table (16 way)
and Allocator
“~ 4 pops 4 yops i | »
96 Entry Reorder Buffer (ROB) e {5260'5;‘&.’
“N 4 pops ‘
-—| 32 Entry Reservation Station |
Port 0 Port 1 Port 5 Port 3 Port 4 Port 2
] ¥ ¥ ¥ ¥ ¥ y \ Y
S = E ALU SSE store | | store | | Load
ALU Sztfl’fJIe ALU Shr:!ll‘JTe Brahch ALU lacdiivess Data | Alitiress
source: Wikipedia.org 5 , ! ‘ |
e 126 Bt Memory Ordering Buffer
FDIV i (MOB)
IR Y vy 3 A Store | -
TAL Internal Results Bus 1 128 Bit [4,256
~+ 128 Bit v v Bit
TECH TALLINN UNIVERSITY OF TECHNOLOGY 32 KB Dual Ported Data Cache | 16 Entry
: -
(8 way) DTLB

Intel Core 2 Architecture

TO GET 10 EXTRA POINTS (OPTIONAL)

= You can present 10 minutes presentation on comparison between two-
three processors

= For instance ARM and INTEL

= What is the difference in their ISA

= What is the difference in their architectures
= On which market they are popular

= Etc...

TAL TALLINN UNIVERSITY OF TECHNOLOGY

TECH

