
DD.MM.YYYY

MICROPROCESSOR SYSTEMS
(IAS0430)

Department of Computer Systems
Tallinn University of Technology

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…1

 What is this circuit?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…1

 What is this circuit?

 It is a bus made of 4 MUX

 How many MUX we need to
transfer one bit?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…1

 What is this circuit?

 It is a bus made of 4 MUX

 How many MUX we need to
transfer one bit?

 We need one MUX to
transfer one bit

 Which Register is transfers
on BUS when x is 0?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…1

 What is this circuit?

 It is a bus made of 4 MUX

 How many MUX we need to
transfer one bit?

 We need one MUX to
transfer one bit

 Which Register is transfers
on BUS when x is 0?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…1

 What is this circuit?

 It is a bus made of 4 MUX

 How many MUX we need to
transfer one bit?

 We need one MUX to
transfer one bit

 Which Register is transfers
on BUS when x is 0?

 R1

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…2

 What is this circuit?

 It is a BUS

 What happens if
S0 = 0 and S1 = 0?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…3

 What is this circuit?

 It is a BUS but made of
buffers

 What happens if
S0 = 1 and S1 = 1?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…4

 Which one is immediate and
which one is indirect addressing mode?

 How many bits has the instruction
format of this example?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…5

 Introducing a couple of new registers in CPU

 We already know ACCU (AC), PC and IR

Register function

DR Store the operand

AR Store memory address

ACCU Hold result

IR Store instruction code

PC Store address of instruction

TR Store temporary data

INTR Store input character

OUTR Store output character

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…5

 Introducing a couple of new
registers in CPU

 We already know ACCU (AC),
PC and IR

 Which element’s input is not
connected to bus?

 What does that MUX do ?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…5

 Introducing of a couple of new
registers in CPU

 We already know ACCU (AC),
PC and IR

 Which element’s input is not
connected to bus?

 ALU

 What does that MUX do?
It determines which register
transfer data on the bus

 What is the purpose of Clock?

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLE…5

 Introducing of a couple of new
registers in CPU

 We already know ACCU (AC),
PC and IR

 Which element’s input is not
connected to bus?

 ALU

 What does that MUX do?

 It determines which register
transfer data on the bus

 What is the purpose of Clock?

 Each operation including
memory read/write, putting
data from registers to bus is
done in 1 or more clock cycle

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP WITH EXAMPLES…6

 Why the following operations can not be done in one clock cycle in this
architecture? Can anyone solve it
for the next lesson?

 IR <- M[PC]

 AC <- AC + TR

 DR <- DR +AC

TALLINN UNIVERSITY OF TECHNOLOGY

RECAP…6

 If you would like to know more on Control Unit check out this link:

 https://www.youtube.com/watch?v=dXdoim96v5A

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 1
 Believe it or not, we have our own ISA already made!

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 1
 Believe it or not, we have our own ISA already made!

 We created an ISA last class. A fully functioning ISA for the 8-bit Dummy CPU.

Op code operation Function Use binary

001 LD Load to accum LD # 5 00110101

010 ST Store to memory ST $ 2 01000010

011 ADD Add value to value in accum ADD # 10 01111010

100 SUB Subtract value from value in accum SUB # 4 10010100

101 EQ Checks in value is equal to value in accum, if true,
skip next instruction

EQ # 5 10110101

110 JP Set value in PC to value JP $ 8 11001000

111 HE Halt Execution HE 11100000

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 1
 Subjects for modifications – how to interpret the id-bit?

 For instance, “LD $ 5” [00100101] – Load to accum from memory, address in word 5.

Op code operation Function Use binary

001 LD Load to accum LD # 5 00110101

010 ST Store to memory ST $ 2 01000010

011 ADD Add value to value in accum ADD # 10 01111010

100 SUB Subtract value from value in accum SUB # 4 10010100

101 EQ Checks in value is equal to value in accum, if true,
skip next instruction

EQ # 5 10110101

110 JP Set value in PC to value JP $ 8 11001000

111 HE Halt Execution HE 11100000

TALLINN UNIVERSITY OF TECHNOLOGY

REAL ISA FORMAT OF RISC-V AND MIPS PROCESSOR

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 1
 What is the Instruction Set Architecture?

 The ISA is the implementation architecture of the computer.

 It dictates everything inside the computer processor, memory, and even what
external devices can connect to it.

 It is the single most important factor in designing a computer.

 It decides how the CPU is built.

 It defines the functions the CPU is capable to perform

 It defines what types of data the CPU can process.

 The importance of the ISA comes from it being the vocabulary of the CPU.

 The CPU internal circuitry is built to translate the instruction into functions and
operations.

 Since the CPU internal circuitry is based on the instructions, the ISA becomes the
only thing that the CPU understands.

 The ISA is a list of functions and operations that the CPU can perform and
describes the type of data and what resources needed to complete these
functions and operations.

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 2
 What are the important things to know in order to make an ISA?

 Must keep in mind at all times that any decision made, becomes a constraint.

 E.g. When choosing the size of any part of the ISA, the size is a constraint on other
parts since the instruction length is finite.

 When we choose 3-bits for op code in the Dummy CPU ISA 00100101

We limited ourselves to only 5 bits left that we can use for other things.

This also limited us to only 8 possible operations to implement.

 Decisions are double edged swords.

 There are infinite designs possible, but the majority are too complex to be practical.

 Choose simplicity over everything.

 The simpler the ISA, the easier it is to design a CPU that executes it.

 Accept that all designs have flaws.

 What types of resources is your ISA going to use:

 How many register? ALU functions? Memory?

 Any external devices?

 Always be prepared to change your ISA later!

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 2
 What to think about when designing an ISA?

 How many registers I want to use?

 Registers are fast and take very small space, but have small capacity as well.

 More registers, means less access to slow memory – Better performance.

 Less registers, means less complexity – better applicability.

 What Bus am I using, how big?

 The bus carries data, instructions, and control signals. However, an 8 bit ISA needs
an 8-bit bus, a 16-bit ISA needs 16-bit bus.

 The bus takes a large area on chip. Smaller bus means more area of other things.

 But, a larger bus, means more bits space for functionality and data transmitted.

 What operation do I need to perform?

 The ISA must take in consideration how do we intend to use the CPU?

 What operation does it make sense to implement?

 What functions those operations must have?

 What do I operate on?

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 2
 What to think about when designing an ISA?

 What types of operands will I have?

 Addresses? Text? Integers? Floating Point numbers?

 Do I need to create different operations for different operands?

 Will need different instruction formats?

 How can I divide the instruction in different formats for different operations?

 What machines do I want to implement this ISA on!

 Single core? Multi core?

 PC? Game console? Calculator?

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 2
 32 bit processor and 64 bit processor?

 https://www.computerhope.com/issues/ch001498.htm

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 3
 There are 2 ISAs we will explore:

 RISC:

 Stands for Reduced Instruction Set Computer.

 It is designed to interpret instructions at 1 or 2 cycle at a time.

 Instructions do one specific thing. Decoding process is simple.

 RISC is software friendly. It gives more room for programmers to be creative. Meaning
that most of the work is done on software level.

 The CPU design is very simple. This allows more on-chip space for resources (reg, mem).
 Lets say we want to multiply 2 and 5 using an operation

PROD.

 We will need to load 2 and 5 to registers A and B

 We then multiply registers A and B using PROD

 Then we store value from the product in reg A to
the memory location 10

 This takes 4 instructions.

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 3
 There are 2 ISAs we will explore:

 RISC:

 RISC uses a compiler that converts high level languages into instructions.

 The RISC compiler does most of the work.

 This takes a long time, making it a slow conversion.

 Although programs are simple and straight forward, those programs are usually
very resource hungry and might take longer to execute.

 More instructions, means programs take more space in memory.

 It needs a collection of general purpose registers to complete operations.

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 3
 CISC:

 Stands for Complex Instruction Set Computer.

 It is designed to complex tasks with the least possible number of instructions.

 Decoding process is complex and need more space on-chip to be implemented.

 CISC is hardware based. The hardware is designed to “understand” instructions and
execute a series of operations using one instruction only.

 The CPU design is very complex. This allows less on-chip space for resources (reg, mem).

 Lets say we want to multiply 2 and 5 using an operation
MUTL.

 We only need to specify the operations MULT, then
point out to where in memory we are storing 2 and
5.

 The instruction is then is translated to microcode
then to microinstructions, then it is executed as
needed.

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 3
 CISC:

 CISC allows compilers to do little work in compiling high level languages.

 The use of microcode allows the majority of the work to be done on the
hardware level.

 Microcode is then converted in microinstructions, similar to regular RISC instructions
and executed in a specialized execution unit.

 CISC has great advantages when it comes to complex operations that involve a large
number of resources to complete (mathematical, graphic, etc.)

 However, as a trade off to that, registers are more likely to be used per instructions
and are refreshed after each instruction is executed.

 But, CISC takes little space in memory as the number of

instructions is low.

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA…

 Is ARM processor RISC or CISC?

 What about intel?

 Does Apple use ARM or Intel?

 Where Intel is still popular?

 RISC, CISC and RISC V:

 https://www.per-international.com/news-and-insights/risc-vs-cisc-
architecture-which-is-better

TALLINN UNIVERSITY OF TECHNOLOGY

RISC CISC

Attribute Evaluation Reason Evaluation Reason

Instruction decoding Low Instructions are hardcoded according to the logic
used for designing the CPU.

Complex Instructions are implemented as functions not as
logical operation. Those functions are then executed
using a complex internal system.

Registers Higher number Simple CPU design take small area of the chip, which
allows more area for on-chip registers and on-chip
memory.

Lower number Complex CPU design leaves little room for on-chip
registers.

Cycles per
instruction

One/two cycles per
instruction

Instructions are simple and easy to execute. Some
require longer time, but cycle times are uniform.

Different cycle times Instructions are complex and do multiple tasks

Memory Needs more
memory

More instructions are needed to do complex tasks,
meaning that more space is required to store these
instructions.

Needs less memory One instruction does multiple tasks which reduces
the total number of instructions to be stored in
memory.

Memory access Simple Limited number of memory access modes. Complex Has much more ways of accessing memory,
especially indexed accesses.

Instruction
complexity

Low Hardware is built to accommodate instructions High Instructions are designed to accommodate
hardware

Pipelining Possible Because the number of cycles needed for an
instruction can be easily divided into stages of
execution.

Hard Instructions have no uniform time of execution,
making pipelining hard and almost impossible.

Operational work Less Registers hold on to information after the execution
of an instruction is finished. This information is then
used by other instructions

More Registers are emptied after each instruction,
requiring all data to be written into memory and
reloaded to registers multiple times.

Clocks Single clock All parts of the CPU operate on the same clock cycle Multi-clock The complexity of the CPU design requires different
parts of the CPU to operate on different frequencies.

Design Target Reduce the number of cycles per instruction at the cost of total number of
instructions needed to execute a program. Less cycles and more memory

Reduce the number of instructions needed to execute a program at the
cost of having different cycles per each instruction. More cycles and less
memory.

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 4
 Performance Evaluation

 Performance evaluation is used to measure the time needed for a program to finish
executing.

 What do we need to account for when we measure time per program?

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 4
 Performance Evaluation

 Performance evaluation is used to measure the time needed for a program to finish
executing.

 What do we need to account for when we measure time per program?

 Time needed to finish a cycle (Time/Cycle) or (T/C)

 The number of cycles per instruction (Cycle / Instruction) or (C/I)

 The number of instructions per program (Instruction / Program) or (I/P)

𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
=

𝑡𝑖𝑚𝑒

𝑐𝑦𝑐𝑙𝑒
×

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 4
 Performance Evaluation

 Performance evaluation is sued to measure the time needed for a program to finish
executing.

 What do we need to account for when we measure time per program?

 Time needed to finish a cycle (Time/Cycle) or (T/C)

 The number of cycles per instruction (Cycle / Instruction) or (C/I)

 The number of instructions per program (Instruction / Program) or (I/P)

𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
=

𝑡𝑖𝑚𝑒

𝑐𝑦𝑐𝑙𝑒
×

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚

 If instructions have different number of cycles, each instruction must be
accounted according to its cycle time.

 Lets take an example.

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 4
 Lets take the following program and table:

 A cycle takes 1.2 ns to complete.

Operation use # of

cycles

LD LD #5 1

LD $5 2

ST ST #2 1

ST $2 1

ADD ADD #10 1

ADD $10 2

SUB SUB #4 1

SUB $4 2

EQ EQ #5 1

JP JP $8 1

HE HE 1

𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
=

𝑡𝑖𝑚𝑒

𝑐𝑦𝑐𝑙𝑒
×

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚

0 LD $0

1 ADD $1

2 EQ #2

3 JP $2

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 4

Operation use # of

cycles

LD LD #5 1

LD $5 2

ST ST #2 1

ST $2 1

ADD ADD #10 1

ADD $10 2

SUB SUB #4 1

SUB $4 2

EQ EQ #5 1

JP JP $8 1

HE HE 1

𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
=

𝑡𝑖𝑚𝑒

𝑐𝑦𝑐𝑙𝑒
×

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚

0 LD $0

1 ADD $1

2 EQ #2

3 JP $2

 Lets take the following program and table:

 A cycle takes 1.2 ns to complete.

 We look for the instructions we are that take similar number of cycles

 LD $0 and ADD $1 take 2 cycles, 2 instructions that take 2 cycles

 EQ #2 and JP $2 take 1 cycle, 2 instructions that take 1 cycle

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 4

Operation use # of

cycles

LD LD #5 1

LD $5 2

ST ST #2 1

ST $2 1

ADD ADD #10 1

ADD $10 2

SUB SUB #4 1

SUB $4 2

EQ EQ #5 1

JP JP $8 1

HE HE 1

𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
=

𝑡𝑖𝑚𝑒

𝑐𝑦𝑐𝑙𝑒
×

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚

 Now, we need to calculate the time need for instructions with different cycles

 Number of instructions that take 2 cycles (C/I) is 2 per program (I/P)

 Which means that they take: 1.2 ns * 2 * 2 = 4.8 ns

 Lets take the following program and table:

 A cycle takes 1.2 ns to complete.

 We look for the instructions we are that take similar number of cycles

 LD $0 and ADD $1 take 2 cycles, 2 instructions that take 2 cycles

 EQ #2 and JP $2 take 1 cycle, 2 instructions that take 1 cycle

0 LD $0

1 ADD $1

2 EQ #2

3 JP $2

TALLINN UNIVERSITY OF TECHNOLOGY

THE ISA - 4
 Lets take the following program and table:

 A cycle takes 1.2 ns to complete.

 We look for the instructions we are that take similar number of cycles

 LD $0 and ADD $1 take 2 cycles, 2 instructions that take 2 cycles

 EQ #2 and JP $2 take 1 cycle, 2 instructions that take 1 cycle

0 LD $0

1 ADD $1

2 EQ #2

3 JP $2

Operation use # of

cycles

LD LD #5 1

LD $5 2

ST ST #2 1

ST $2 1

ADD ADD #10 1

ADD $10 2

SUB SUB #4 1

SUB $4 2

EQ EQ #5 1

JP JP $8 1

HE HE 1

𝑡𝑖𝑚𝑒

𝑝𝑟𝑜𝑔𝑟𝑎𝑚
=

𝑡𝑖𝑚𝑒

𝑐𝑦𝑐𝑙𝑒
×

𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
×
𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝑝𝑟𝑜𝑔𝑟𝑎𝑚

 Now, we need to calculate the time need for instructions with different cycles

 Number of instructions that take 2 cycles (C/I) is 2 per program (I/P)

 Which means that they take: 1.2 ns * 2 * 2 = 4.8 ns

 Number of instructions that take 1 cycle (C/I) is 2 per program (I/P)

 Which means that they take: 1.2 ns * 1 * 2 = 2.4 ns

 The total timing needed to finish this small program is 4.8 + 2.4 = 7.2 ns

TALLINN UNIVERSITY OF TECHNOLOGY

EXAMPLES: INTEL 8080 / 8085 / 8086 (8088)

source: Wikipedia.org

i8080 i8085 i8086/88

TALLINN UNIVERSITY OF TECHNOLOGY

EXAMPLES: INTEL 80186 / 80286

source: Wikipedia.org

i80286i80186

TALLINN UNIVERSITY OF TECHNOLOGY

EXAMPLES: INTEL 80386 / 80486

source: Wikipedia.org

i80386 i80486

TALLINN UNIVERSITY OF TECHNOLOGY

EXAMPLES: INTEL PENTIUM MMX

source: Wikipedia.org

TALLINN UNIVERSITY OF TECHNOLOGY

EXAMPLES: INTEL CORE2

source: Wikipedia.org

TALLINN UNIVERSITY OF TECHNOLOGY

TO GET 10 EXTRA POINTS (OPTIONAL)

 You can present 10 minutes presentation on comparison between two-
three processors

 For instance ARM and INTEL

 What is the difference in their ISA

 What is the difference in their architectures

 On which market they are popular

 Etc…

