13. Lainelevi erinevates
keskkondades

IEE1110 — Elektromagnetvaljatehnika



Lainelevi dielektrikutes

e Faasorkujul lainevorrand homogeenses ja isotroopses keskkonnas
dielektrilise labitavusega € ja magnetilise labitavusega u

V2E, = —k?E;.
* Lainearv soltub nuld keskkonna parameetritest € ja u
k = w\/ue = kovlo&p -

e 7/-telje suunas leviva, x-telje sihilise elektrivalja komponendiga laine

jaoks saame
d*E,

dz?

= —k2Ey,.



Levikonstant

* Lainearv vOib vaakumist erinevas keskkonnas olla kompleksne suurus.
Viimast tuntakse ka levikonstandi voi leviteguri nime all

y=jk=a+]jp.
 Levikonstandi reaalosa a nimetatakse sumbeteguriks modtihikuga
Neeprit meetri kohta [Np/m].

* Levikonstandi imaginaarosa f kirjeldab laine faasikiirust [rad/m] ja on
tuntud kui faasikonstant.

* Lainevorrandi vdimalik lahend dielektrikus on kujul
Eys = er_ij — Exoe—aze—jﬁz_



Neepri ja detsibelli vahekord

e Kui signaal, naiteks pinge U, sumbub 1 Np vOrra siis on
Uy
In|— | =1,
U
viimasest on lihtne naha, et pingete suhe on vordne naturaallogaritmi

alusega e = 2,71828...

* Sellise pingete suhte korral on sumbumus detsibellides
20log(e) = 8,686.

* Seegal Np=8,686dBjaldB=0,115 Np.




Sumbuyv laine

* Ule-eelmise slaidi 18pus olevale faasorile vastab elektrivilja tugevuse kujul
E.(z,t) = E,,e” % cos(wt — Bz).

e Avaldisest on naha, et tegemist on lainega, mille amplituud vaheneb ruumis
levides — teisisdnu sumbuva lainega.

* VViimasest lahtub, et laine faasikiirus

* Lainepikkus A on seega



Polarisatsioon vahelduva elektrivalja korral

* Va
PO
* Po

nelduva elektrivalja korral tuleb arvestada sellega, et keskkonna
ariseerumine ei toimu hetkeliselt vaid selleks kulub veidi aega.

ariseeritus P(t) on sellisel jut\ul leitav konvolutsioonina

P(t) = ¢, f v (t = DE(@)dr .

— O

* Konvolutsiooniteoreemist lahtudes saab kahe suuruse ajalise
konvolutsiooni asendada nende Fourier’i teisenduste korrutisega ehk

P(w) = goxe(w)E(w).



Kompleksne dielektriline labitavus

* Viimasest avaldisest on ndha, et dielektriline vastuvotlikkus x, ja seega
ka materjali dielektriline Iabitavus € on mdlemad sagedusest sdltuvad
suurused.

* Mainitud sagedussoltuvus pohjustab dielektrikutes dispersiooninahtust
ehk elektromagnetlainete levikiiruse séltuvust nende sagedusest.

* Viimane tahendab omakorda seda, et materjali dielektriline l1abitavus
£(w) on tegelikult lisaks veel kompleksne suurus:

e(w) =€ (w) —je'" (w).



Levikonstant

e Sarnastel pohjustel voib ka materjali magnetiline labitavus olla
kompleksne suurus u = u’ - ju”. Ka siin on imaginaarosa negatiivne.

* Enamik materjale on mittemagneetilised (para- ja diamagneetikud),
seega vaatleme edaspidi just kompleksse dielektrilise |abitavuse moju
levikonstandi vaartusele.

 Lainearv on sellisel juhul

k=wule —ije") = wfue’ |1 — i—, .
\




Levikonstant

* Levikonstandi y = jk reaal- ja imaginaarosa ehk sumbetegur ja
faasikonstant on seega vastavalt:

!/ r 2
g g
a = Re{jk} = w and 1+(—,) —1;

\12\1\1 €
!/ II2
,6’=Im{jk}=a)E 1+(8—,) + 1.
NI €
\

e Suhet tan(6) = €”’ /€’ nimetatakse kaonurga tangensiks.



Tasalaine magnetvalja komponent

* Laine magnetvalja komponent

E.o
HySZ%e Az~ ]'BZ.

e Karakteristlik impedants on ntud samuti kompleksne suurus

T= e =" \f\/ _]_

\

* Viimase tottu tekib laine elektri- ja magnetvalja komponentide vahele
faasinihe.



Kaovaba dielektrik

* Dielektriku erijuhuks on ideaalne, kaovaba dielektrik, mille puhul €”=0 ja
seega €’ = €. Sellisel juhul on sumbetegur a = 0 ja faasikonstant on seega
f = w+/ue. Elektrivali on kujul

E.(z,t) = E,,cos(wt — fz) .

* Viimane liigub z-telje positiivse suunas faasikiirusega
W 1 c c

PR vEE w

* Valguse kiiruse (vaakumis) ¢ suhet faasikiirusesse keskkonnas nimetatakse
antud keskkonna murdumisnaitajaks n = \/u,-&,.

Up



Kaovaba dielektrik

* Laine magnetvalja komponent kaovabas keskkonnas

Exo
H)/S — ad _]:BZ
n

» Karakteristlik impedants on sellisel juhul puhtalt reaalarvuline

* Lainepikkus




Naide — tasalaine vees

e Sagedusega f = 1 MHz laine
puhtas vees: £, =81 jau, = 1.

E.(z,t) = E,,cos(wt — z)
*E,=42V/m;
* /=0,19 rad/m;
*A=33m;
* v, =3,3-10" m/s;
*nN=420Q.

Tasalaine vees

E (z,t) [Vim]

100




Naide — tasalaine vees
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Kaod keskkonnas

* Keskkonnas tekkivate kadude paremaks moistmiseks vaatleme homogeenset,
uhtlase paksuse [ - fa ristldikega (pindala §), uuritavast materjalist katsekeha mis

asub kahe paralleelse elektroodi vahel.

-

'\

* Elektroodidele rakendatakse harmooniline vahelduvpinge
u(t) = U, cos(wt).

* Viimane on faasorkujulu. = U _e%=U_.
S m m



Kaovaba keskkond

* Kui katsekeha paksus / ja rakendatud pinge ringsagedus w on piisavalt
vaikesed, siis voime eeldada, et elektroodide vahel on elektrivalja
tugevus

u(t) U,

E(t) = Tal = Tcos(a)t) a;. C

e Kaovabas keskkonnas saame katsekeha elektroodide vahele —l—
paigaldades ideaalse (kaovaba) kondensaatori.

e Kuna dielektrikus puuduvad vabad laengukandjad siis koosnev kogu
plaatide vaheline voolutihedus ainult nihkevoolu komponendist
dD OE cU,w (00)
= — = —_— = — a;.
)4 Py € Py l sin(wt) a;




Kaovaba keskkond

* Kuna nii keskkond, kui elektrivalja tugevus on Uhtlased, siis on seda ka
nihkevoolu tihedus ja elektroodide vaheline nihkevool on

eSU,,,w
Iy = SlJal = — l
: | C
* Meenutame, et plaatkondensaatori mahtuvus on

c=5 T

[
ja kondensaatori reaktiivjuhtivus (suspektants) B, = 1/X_ = jwC. Seega

sin(wt).

s
ig(t) =jB.U,, sin(wt) = B.U,, cos (wt + E) .



Kaovaba keskkond - faasordiagramm

Im
* Naeme, et ainus voolukomponent on seda
pOhjustavast pingest veerand perioodi (1t/2)
vorra ees.

* Tulemus on just selline, nagu seda ideaalse
kondensaatori puhul ootaks: CIVIL. \

* Tegemist elektrivalja tugevuse E; ja E
nihkevoolu tiheduse J 4 vahelise Uldise suhte
the avaldusviisiga.

Re



Kadudega keskkond

* Valise vahelduva elektrivalja mdjul muudavad dielektrikus paikenad
seotud laengud perioodiliselt oma orientatsiooni. Selle liikkumise tottu

muutub osa elektromagnetvalja energiast soojuseks — keskkonnas
tekivad kaod.

* Tekkinud kadusid valjendab kompleksse dielektrilise labitavuse

imaginaarosa €”. Kadudega keskkonnas on nihkevoolul nttd kaks,
omavahel ortogonaalset, komponenti

_(/ -//)aE
Jo = (& — ¢ Py

* Tuleme jargnevalt tagasi Glaltoodud katsekeha naite juurde.



Kadudega keskkond

 Voolutihedus katsekehas faasorkujul
Jas = jweEg = jw (e’ —je")Eg = jwe'Eg + we" K.

 Sama avaldis elektroodide vahelise pinge ja voolutugevuste kohta
i(t) = (B; + Golu(t),

kus kaojuhtivus on T [c

we''S G, —  u(t)
GC — l . ¢ * O

* Vaadeldud katsekeha elektriliseks ekvivalendiks on kondensaatori ja
takisti ro6puhendus.

O




Kadudega keskkond — faasordiagramm

* Voolutihedusel on kaks komponenti.

* Faasinihe voolutiheduse ja elektrivalja tugevuse J
vahel on nlud vaiksem kui /2 rad. s

: . : : Jwe’Es
* Nurka 6 voolutiheduse ja tema imaginaarosa 6
vahel nimetatakse kaonurgaks.

e Kadude numbriliseks iseloomustamiseks — > o
kasutatakse kaonurga tangensit we'ks K

r

£
tano = —.
E ESR

* Praktikas kasutatakse komponentide 1 X,
iseloomustamiseks nende huvetegurit: Q =

o

tanéd ESR’ |




Naide 2 — tasalaine vees

e Sagedusega f = 2,5 GHz laine
puhtas vees: £, =78 -j7 jau, =1.

E.(z,t) = E, e~ % cos(wt — Bz)

Tasalaine vees

50

X 4.76
Y 0.632
W 2 13.8845

E (z.t) [Vim]

* Kaonurga tangens on 0,0897.

e Sumbetegur ¢ =21 Np/m ja
faasikonstant 5 = 463 rad/m,
seega lainepikkus A = 1,36 cm.

* Karakteristlik impedants n =42,5 °>)\
t [ns] 0 1 2 3

+1,9j = 42,642,56° Q. e

-50




E (z, t) [Vim]

Naide 2 — tasalaine vees
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Lainelevi juhtivas keskkonnas

* Jargnevalt on vaatluse all keskkonnad, kus vabad laengud saavad
elektrivalja mojul liikuda ja pohjustada seega elektrivoolu tekke.

* Seos elektrivalja tugevuse E ja selle tagajarjel tekkiva voolutiheduse J
vahel oli teatavasti J = oE, kus o on keskkonna juhtivus. Tekkinud
voolude tagajarjel kaotab taolises keskkonnas levib elektromagnetlaine
energiat.

 Jargnevalt seostame keskkonna juhtivuse o meile juba tuttava
dielektrilise labitavuse imaginaarosaga €”.



Lainelevi juhtivas keskkonnas

e Alustame faasorkujul Ampere’i seadusega
VX H, =jw(e —je'"Es = we'Eg + jwe'Eg .

* Vordleme saadud tulemust juhtivusvoolu tihedust J, sisaldava kujuga

VX H, =]+ jwe'Es.
* Peame meeles, et J, = oE, seega

VX H; = 0Eg + jwe'Eg
* \/Oorreldes omavahel esimest ja kolmgndat avaldist saame seose

7

E =—.
w



Kaod juhtivas keskkonnas - faasordiagramm

Im

e Kaod tekivad ntiid peamiselt materjalis
indutseeritud juhtivusvoolude tottu.

J=(0 + jwe’)Eq

e Kaonurga tangensjuhtiva keskkonna korral on

J4s = JwWEEs

8” o o)
tano = — = —.
€ Ew ‘
* Naeme, et juhtivus- ja nihkevoolude | -oE E
. . ~ o S S
amplituudide suhe on vordne kaonurga
tangensiga
17 [ * O
]as € o £

Jas & we

Re



Vaikese juhtivusega keskkond

* Kui kaonurga tangens on vaike, siis saab materjali elektrilisi omadusi
aproksimeerida.

* Ligikaudsete avaldiste tapsus on suurusjargus moni protsent, kui kaonurga
tangens on vaiksem kui ks kimnendik: tand <0, 1.

* Juhtiva materjali korral, kus €’ = o/w

. . / . O-
jk = jw/pe \/1—1 ;

we'’
e Saab aproksimeerimiseks kasutada Newtoni tldistatud binoomvalemit:
1 x x> x> 5 7
Vi+x= 14+x)2=14+=-——+ X*+—=x" ...

2 8 16 128 256



Levikonstant juhtivas keskkonnas

* Sumbetegur

o |U
= Relikl ~ — |—.
a = Re{jk} N
* Faasikonstant
B = Imfjk} ~ w./ '1+1(0)2
= Imyjk} = w/ue g\ e .

* Viimast saab tavaliselt taiendavalt lihtsustada kujule
B = w.ue'.



Karakteristlik impedants juhtivas keskkonnas

* Rakendades Newtoni binoomteoreemi karakteristliku impedantsi
avaldisele

Sdadme




Poyntingi teoreem

e John Henry Poynting 1884.

e Alustame Maxwell’i vorrandist (Ampere’i seadus):

VXH= +aD
=] ot

 \/Ottes viimase vorrandi mdlemast poolest korrutise elektrivalja
tugevusega E saame

oD
E-(VXH)=E-J+E-—.

* Mistahes kahe vektorvalja, naiteks E ja H korral, kehtib jargmine seos:
V- (ExXH)=H:(VXE)—E:(VxH).

Foto: https://en.wikipedia.org/



Poyntingi teoreem

e VViimasest kahest saame

oD
H-(VXE)—V-(EXH)=E-J+E-—.

dt
e Jargnevalt rakendame seost (Faraday seadus):
0B
VXE=——.
dt
* Peale liikmete Umberjarjestamist
dD 0B

-V - H =E-J+E-— +H—.
V-(EXH) J + at+ ”



Poyntingi teoreem

* Kui eeldame, et keskkonna elektrilised parameetrid ei ole ajas
muutuvad, siis saame teha jargneva asenduse

. D . OE
ot - ot
* Mistahes funktsiooni f(t) korral saab liitfunktsiooni tuletise reeglit
rakendades naidata, et

df* (@) df (¢t)
a4 ®) dt




Poyntingl teoreem

e Viimast seost rakendades saame lihtsustada:
oD c0E* 0 (eEz)

b e T2t T\ 2

* Tapselt samast loogikast lahtudes saame ka magnetvalja
energiatiheduse muudu kujul:

0B OH poH? 0 (,uHZ)

e = =5 T o\



Poyntingi teoreem

 NUUd on meie avaldis kujul

0 (eE? uH?
V- (ExH) =E- A
V- (E X H) ]+at<2+2>

* VOtame molemast poolest ruumintegraali ja rakendame lisaks vasaku
poole kohta divergentsi teoreemi, saame

famwas= [ 510 2 (£ 445



Oomilised kaod —

* Vaatame eelmisest avaldisest seost h
fﬂE-]dv. T
v N

* Olgu meil silindriline, Uhtlase ristldikega homogeenne juhtiv keha.
Olgu elektrivalja tugevus pikki silindrit Ghtlane. Sellisel juhul oleks
potentsiaalide vahe silindri otste vahel U = h-E V.

* Kui silindrit labib, viimase madjul, uhtlane voolutihedus J, siis on
silindrit 1abiva voolu tugevus
I =J]S =]nr? A

Naeme, et kirjeldame siin sisuliselt takistit.




Oomilised kaod

* Meie naitejuhul on

g j E - Jdv = EJhnr? = EJV = UL.

* Pinge mootiihikuks on volt V, ehk J/C, voolutugevuse omaks amper A
ehk C/s. Seega korrutise Ul dimensiooniks on J/s ehk W.

* Tegemist on oomilise kaoga takistis — elektrienergia muutumisega
mingiks teiseks energialiigiks, enamasti soojusenergiaks.

e Kui voolu lilkumise suund on vastupidine elektrivalja omale, siis on
,kadu“ negatiivne ehk tegemist on elektrienergia allikaga.

e Sama kehtib ka mistahes elektrivalja kuju, voolutiheduse jaotuse ja
ruumi V korral. Ainult konkreetse voimsuse leidmine on siis keerukam.



Elektrivalja salvestunud energia

* Neljandas loengus leidsime, et elektrivalja salvestunud energia on

W, = ff €E2

* Vaatame nuud Poyntingi teoreeml parema poole teist lildetavat

atﬂ‘ &‘EZ

* Naeme, et tegemist on eIektrlvaIJa salvestunud energia muutusega
ajas. Dimensionaalselt on jallegi tegemist voimsusega [W]. Viimane ei
seostu aga mitte energia kulutamisega vaid selle salvestamisega.




Magnetvalja salvestunud energia

e Sarnasel on Poyntingi teoreemi parema poole kolmas liidetav

] o

magnetvalja salvestatud energia muutus ajas. Tegemist on jallegi, kas
magnetvalja taiendava energia salvestamisega voi sinna salvestunud
energia kasutamisega.

» Koik need kolm liidetavat kokku naitavad, et elektrienergiat voib
muuta moneks teiseks energialiigiks voi seda saab salvestada kas
elektri- voi magnetvalja.



Poyntingi vektor

e Suurust

M=ExH |—
m

W:|
nimetatakse Poyntingi vektoriks.

* Poyntingi vektori moodul || naitab pindalathikut labiva
elektromagnetvalja voimsust [W] (voimsuse pindtihedust) ja suund
naitab energia liikkumise (laine levimise) suunda.

Foto: https://en.wikipedia.org/



Poyntingi vektor ideaalses dielektrikus

* |deaalses dielektrikus on valjatugevused vastavalt:
Ex(z,t) = Eyo cos(wt — Bz);

E
H,(zt) = %Ocos(a)t — Bz).

* Poyntingi vektori (z - komponendi) hetkvaartus on seega
2

E
I1,(z,t) = %Ocosz(wt — Bz).

* Poyntingi vektori keskvaartus ajas
__ E?
m, =2
21



Naide — tasalaine vees ||

* Poyntingi vektori hetkvaartus |
puhtas vees
EZ,
HZ(ZI t) — LCOSZ(C{)t — BZ)
n

11 (z,t) [Wim?]

e \/Oimsustihedus on suunatud
laine levimise suunas.

100




Naide — tasalaine vees ||
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Poyntingi vektor kadudega dielektrikus

* Kadudega dielektrikus on elektrivalja tugevus:
E.(z,t) = E,se” % cos(wt — Bz).

e Karakteristlik impedants, ehk lainetakistus on sellises keskkonnas
kompleksne suurus n = |n|46,, seega magnetvalja tugevus:

_ Exo —-az
Hy,(z,t) =—e cos(a)t — Pz — @,7) .

ul
* Poyntingi vektori hetk- ja keskvaartused on vastavalt:
EZ
I1,(z,t) = Tnl 2"‘Z[Cos(Zwt — 2Bz — 77) + cos@ ] ;
__ EZ
n, =2 ~4%%c0s0),.

2[n]



Naide 2 — tasalaine vees |
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Poyntingi vektor faasorkujul

* Poyntingi vektori keskvaartus (ajas) on kergesti leitav valjade
faasorkujust

1
M, = - Re{Es x Hg}.



Lainelevi heades juhtides

* Levitegur

. . , . O-
V=]k=]w\/#€\/1—l -

WE
* Heades juhtides on kaonurga tangens ﬁ > 1 ja metallides loetakse
tavaliselt €’ = g,,.

e Kuna kaonurga tangens on Uhest palju suurem saab leviteguri avaldist
lihtsustada jargmisele kujule

o)
jk ~ jw\/ue’\/ —j— = jy—jwuo.

wéeE




Leviteguri vaartus heades juhtides

* Leides kompleksarvu —jwuo juure saame leviteguri kujul

jk =1 +j)yrfuoc=a+jp.

* Naeme, et sumbetegur a ja faasikonstant f on omavahel vordsed:

a=p =, nfuo.

* Tasalaine vorrand:

E.(z,t) = E,ge V™HoZ cos(a)t — w/ﬂf,uaz) .

e Juhtivusvoolu tihedus:

1.(z,t) = 6E,(z,t) = 0E,qe VT HoZ Cos(wt — 1/ﬂf,uaz).



Pinnaefekt

* Nii elektrivalja tugevus, kui ka juhtivusvoolu tihedus kahanevad vaartuseni
e~ 1 =~ 0,368 siuigavusel . ,

7 = = — =

a 1/7Tf,ua.
* Nahtust ennast nimetatakse pinnaefektiks ja suurust 6 pinnakihi paksuseks.

* Pinnaefekti tagajarjel on juhtme aktiivtakistus samuti sagedusest soltuv.
Sageduse suurenedes vaheneb juhtiv pindala ja takistus suureneb vordeliselt
sagedusega.

* Lisaks suurendab juhtmete takistust taiendavalt veel ka lahedusefekt
(proximity effect).




LitZi juhe

Sama ruumala, ja seega sama
massi ning hinna korral,

saab juhtivat kogupindala
suurendada, kui kasutada uhe
juhtme asemel peenikeste
traatide kimpu — Litz’i juhet
(Litzendraht).




Pinnaefekt

* Pinnaefekti tottu vaheneb voolutihedus J materjalis stigavuse
suurenedes eksponentsiaalselt.

* Saab naidata, et kogu voolutugevus / juhis on sama suur kui oleks
hipoteetilisel, konstantse voolutihedusega juhul, olukorras kus vool
kulgeks ainult kihis paksusega 6.

* Juhul, kui pinnakihi paksus on palju vaiksem juhtme diameetrist 2a
(6 << 2a), saab Umarjuhtme takistust leida kui

P L
- o2mad’

kus L on juhtme pikkus.



Lainelevi heades juhtides

 Faasikiirus
Y w6
Up = E = WO.
 Lainepikkus A on seega
2= s
p
e Karakteristlik impedants (lainetakistus):
1 1 V2 m

_L_
= ) ]05 gd 4



Lainelevi heades juhtides

 Elektrivalja tugevus

_Z Z
E.(z,t) = E,,e &cos (a)t — 5) .

* Magnetvalja tugevus

H,(zt) =

o0E,, _Z ( Z n)

e ocos|wt ——=——
V2 o 4

* Poyntingi vektori keskvf—jf—jrtus2 ,
_ 00Ez, _,Zz m o00E;, _-,Z
Hz — x0 o 25COS- — x0 25.
22 4 4
e VOimsuse pindtihedus juhi pinnast kaugusel 6 on kahanenud 13,5 % selle

vaartusest pinnal.




Materjalid

* W.H. Hayt, J.A. Buck. Engineering Electromagnetics. 6t ed.
Uheteistkimnes peatukk.




Lisa A — Kompleksarvu ruutjuur

 Kompleksarvu esitamisel eksponentkujul
z = |z|el?.

on astmele n tostmine teostatav kui
z" = |z|"el9,
. . . 1
* Ruutjuure leidmine on astendamine suurusega n = = seega
1 jp ¢
Vz = |z|2e2 = ./|z|e2.



Lisa A — Kompleksarvu ruutjuur

* Kompleksarvu eksponentkujul kehtivat seost saab rakendada
ruutjuure leidmiseks algebralisel kujul kompleksarvust z = x + yj:

vz =/x +yj=a+bj
kus a ja b on vastavalt ruutjuure real- ja imaginaarosa.

e Tostes viimase vorrandi molemad pooled ruutu saame
x + vj = (a + bj)? = a? — b? + 2abj.
 Naeme, et tulemuseks on kahe tundmatuga vorrandstisteem
x = a® — b?
y =2ab



Lisa A — Kompleksarvu ruutjuur

 Viimast on lihtsam lahendada kui votame arvesse seose kompleksarvu ja tema
ruutjuure moodulite vahel

Jx2 +y2 = a? + b2,

e Lahendades slUsteemi

x = a* — b?

Jx2 +y2 =a? + b?’

liitmisvotte abil saame kompleksarvu z ruutjuure kujul:

x2+vy2i+x X%+ vy —x
JFo EAYIHx VP AyIox
\ 2 \ 2

Ruutjuure imaginaarosa mark on sama mis arvul endal.
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