
13. Lainelevi erinevates 
keskkondades

IEE1110 – Elektromagnetväljatehnika



Lainelevi dielektrikutes

• Faasorkujul lainevõrrand homogeenses ja isotroopses keskkonnas 
dielektrilise läbitavusega ε ja magnetilise läbitavusega μ

𝛻2𝐄𝐬 = −𝑘2𝐄𝐬 .

• Lainearv sõltub nüüd keskkonna parameetritest ε ja μ

𝑘 = 𝜔 𝜇𝜀 = 𝑘0 𝜇0𝜀0 .

• Z-telje suunas leviva, x-telje sihilise elektrivälja komponendiga laine 
jaoks saame 

𝑑2𝐸𝑥𝑠
𝑑𝑧2

= −𝑘2𝐸𝑥𝑠 .



Levikonstant

• Lainearv võib vaakumist erinevas keskkonnas olla kompleksne suurus. 
Viimast tuntakse ka levikonstandi või leviteguri nime all

𝛾 = j𝑘 = 𝛼 + j𝛽.

• Levikonstandi reaalosa α nimetatakse sumbeteguriks mõõtühikuga 
Neeprit meetri kohta [Np/m].

• Levikonstandi imaginaarosa β kirjeldab laine faasikiirust [rad/m] ja on 
tuntud kui faasikonstant.

• Lainevõrrandi võimalik lahend dielektrikus on kujul

𝐸𝑥𝑠 = 𝐸𝑥0e
−j𝑘𝑧 = 𝐸𝑥0e

−𝛼𝑧e−j𝛽𝑧 .



Neepri ja detsibelli vahekord

• Kui signaal, näiteks pinge U,  sumbub 1 Np võrra siis on 

ln
𝑈1
𝑈2

= 1,

viimasest on lihtne näha, et pingete suhe on võrdne naturaallogaritmi 
alusega e ≈ 2,71828…

• Sellise pingete suhte korral on sumbumus detsibellides
20log e ≈ 8,686.

• Seega 1 Np ≈ 8,686 dB ja 1 dB ≈ 0,115 Np. 



Sumbuv laine

• Üle-eelmise slaidi lõpus olevale faasorile vastab elektrivälja tugevuse kujul

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0e
−𝛼𝑧 cos 𝜔𝑡 − 𝛽𝑧 .

• Avaldisest on näha, et tegemist on lainega, mille amplituud väheneb ruumis 
levides – teisisõnu sumbuva lainega.

• Viimasest lähtub, et laine faasikiirus

𝑣𝑝 =
𝜔

𝛽
.

• Lainepikkus λ on seega 

𝜆 =
2π

𝛽
.



Polarisatsioon vahelduva elektrivälja korral

• Vahelduva elektrivälja korral tuleb arvestada sellega, et keskkonna 
polariseerumine ei toimu hetkeliselt vaid selleks kulub veidi aega.

• Polariseeritus P(t) on sellisel juhul leitav konvolutsioonina

𝐏 𝑡 = 𝜀0 න

−∞

𝑡

𝜒𝑒 𝑡 − 𝜏 𝐄 𝜏 𝑑𝜏 .

• Konvolutsiooniteoreemist lähtudes saab kahe suuruse ajalise 
konvolutsiooni asendada nende Fourier’i teisenduste korrutisega ehk

𝐏 𝜔 = 𝜀0𝜒𝑒 𝜔 𝐄 𝜔 .



Kompleksne dielektriline läbitavus

• Viimasest avaldisest on näha, et dielektriline vastuvõtlikkus χe ja seega 
ka materjali dielektriline läbitavus ε on mõlemad sagedusest sõltuvad 
suurused.  

• Mainitud sagedussõltuvus põhjustab dielektrikutes dispersiooninähtust
ehk elektromagnetlainete levikiiruse sõltuvust nende sagedusest.

• Viimane tähendab omakorda seda, et materjali dielektriline läbitavus 
ε(ω) on tegelikult lisaks veel kompleksne suurus: 

𝜀 𝜔 = 𝜀′ 𝜔 − j𝜀′′ 𝜔 .



Levikonstant

• Sarnastel põhjustel võib ka materjali magnetiline läbitavus olla 
kompleksne suurus μ = μ’ - jμ’’. Ka siin on imaginaarosa negatiivne. 

• Enamik materjale on mittemagneetilised (para- ja diamagneetikud), 
seega vaatleme edaspidi just kompleksse dielektrilise läbitavuse mõju 
levikonstandi väärtusele. 

• Lainearv on sellisel juhul

𝑘 = 𝜔 𝜇 𝜀′ − j𝜀′′ = 𝜔 𝜇𝜀′ 1 − j
𝜀′′

𝜀′
.



Levikonstant

• Levikonstandi γ = jk reaal- ja imaginaarosa ehk sumbetegur ja 
faasikonstant on seega vastavalt: 

𝛼 = Re j𝑘 = 𝜔
𝜇𝜀′

2
1 +

𝜀′′

𝜀′

2

− 1;

𝛽 = Im j𝑘 = 𝜔
𝜇𝜀′

2
1 +

𝜀′′

𝜀′

2

+ 1.

• Suhet tan(δ) = ε’’/ε’ nimetatakse kaonurga tangensiks.



Tasalaine magnetvälja komponent

• Laine magnetvälja komponent

𝐻𝑦𝑠 =
𝐸𝑥0
𝜂

e−𝛼𝑧e−j𝛽𝑧 .

• Karakteristlik impedants on nüüd samuti kompleksne suurus

𝜂 =
𝜇

𝜀′ − j𝜀′′
=

𝜇

𝜀′

1

1 − j
𝜀′′
𝜀′

.

• Viimase tõttu tekib laine elektri- ja magnetvälja komponentide vahele 
faasinihe.



Kaovaba dielektrik

• Dielektriku erijuhuks on ideaalne, kaovaba dielektrik, mille puhul ε’’= 0 ja 
seega ε’ = ε. Sellisel juhul on sumbetegur α = 0 ja faasikonstant on seega 
𝛽 = 𝜔 𝜇𝜀. Elektriväli on kujul

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0 cos 𝜔𝑡 − 𝛽𝑧 .

• Viimane liigub z-telje positiivse suunas faasikiirusega

𝑣𝑝 =
𝜔

𝛽
=

1

𝜇𝜀
=

𝑐

𝜇𝑟𝜀𝑟
=
𝑐

𝑛
.

• Valguse kiiruse (vaakumis) c suhet faasikiirusesse keskkonnas nimetatakse 
antud keskkonna murdumisnäitajaks 𝑛 = 𝜇𝑟𝜀𝑟.



Kaovaba dielektrik

• Laine magnetvälja komponent kaovabas keskkonnas

𝐻𝑦𝑠 =
𝐸𝑥0
𝜂

e−j𝛽𝑧 .

• Karakteristlik impedants on sellisel juhul puhtalt reaalarvuline

𝜂 =
𝜇

𝜀
.

• Lainepikkus 

𝜆 =
2π

𝛽
=

2π

𝜔 𝜇𝜀
=

1

𝑓 𝜇𝜀
.



Näide – tasalaine vees

• Sagedusega f = 1 MHz laine 
puhtas vees: εr = 81 ja μr = 1.

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0 cos 𝜔𝑡 − 𝛽𝑧

• Ex0 = 42 V/m;

• β = 0,19 rad/m;

• λ = 33 m;

• vp = 3,3·107 m/s;

• η = 42 Ω.



Näide – tasalaine vees



Kaod keskkonnas

• Keskkonnas tekkivate kadude paremaks mõistmiseks vaatleme homogeenset, 
ühtlase paksuse l - ja ristlõikega (pindala S), uuritavast materjalist katsekeha mis 
asub kahe paralleelse elektroodi vahel. 

• Elektroodidele rakendatakse harmooniline vahelduvpinge

𝑢 𝑡 = 𝑈𝑚 cos 𝜔𝑡 .

• Viimane on faasorkujul us = Umej·0 = Um.

al

S

l



Kaovaba keskkond

• Kui katsekeha paksus l ja rakendatud pinge ringsagedus ω on piisavalt 
väikesed, siis võime eeldada, et elektroodide vahel on elektrivälja 
tugevus

𝐄 𝑡 =
𝑢 𝑡

𝑙
𝐚𝑙 =

𝑈𝑚
𝑙
cos 𝜔𝑡 𝐚𝑙 .

• Kaovabas keskkonnas saame katsekeha elektroodide vahele 
paigaldades ideaalse (kaovaba) kondensaatori. 

• Kuna dielektrikus puuduvad vabad laengukandjad siis koosnev kogu 
plaatide vaheline voolutihedus ainult nihkevoolu komponendist

𝐉𝑑 =
𝜕𝐃

𝜕𝑡
= 𝜀

𝜕𝐄

𝜕𝑡
= −

𝜀𝑈𝑚𝜔

𝑙
sin 𝜔𝑡 𝐚𝑙 .



Kaovaba keskkond

• Kuna nii keskkond, kui elektrivälja tugevus on ühtlased, siis on seda ka 
nihkevoolu tihedus ja elektroodide vaheline nihkevool on

𝐼𝑑 = 𝑆 𝐉𝑑 = −
𝜀𝑆𝑈𝑚𝜔

𝑙
sin 𝜔𝑡 .

• Meenutame, et plaatkondensaatori mahtuvus on 

𝐶 =
𝜀𝑆

𝑙
ja kondensaatori reaktiivjuhtivus (suspektants) Bc = 1/Xc = jωC. Seega

𝑖𝑑(𝑡) = j𝐵𝑐𝑈𝑚 sin 𝜔𝑡 = 𝐵𝑐𝑈𝑚 cos 𝜔𝑡 +
𝜋

2
.



Kaovaba keskkond - faasordiagramm

• Näeme, et ainus voolukomponent on seda 
põhjustavast pingest veerand perioodi (π/2) 
võrra ees. 

• Tulemus on just selline, nagu seda ideaalse 
kondensaatori puhul ootaks: CIVIL.

• Tegemist elektrivälja tugevuse Es ja 
nihkevoolu tiheduse Jds vahelise üldise suhte 
ühe avaldusviisiga. 

US

IdS

Im

ReES

JdS



Kadudega keskkond

• Välise vahelduva elektrivälja mõjul muudavad dielektrikus paikenad 
seotud laengud perioodiliselt oma orientatsiooni. Selle liikumise tõttu 
muutub osa elektromagnetvälja energiast soojuseks – keskkonnas 
tekivad kaod.

• Tekkinud kadusid väljendab kompleksse dielektrilise läbitavuse 
imaginaarosa ε’’. Kadudega keskkonnas on nihkevoolul nüüd kaks, 
omavahel ortogonaalset, komponenti

𝐉𝑑 = 𝜀′ − j𝜀′′
𝜕𝐄

𝜕𝑡
.

• Tuleme järgnevalt tagasi ülaltoodud katsekeha näite juurde.



Kadudega keskkond

• Voolutihedus katsekehas faasorkujul
𝐉𝐝𝐬 = j𝜔𝜀𝐄𝐬 = j𝜔 𝜀′ − j𝜀′′ 𝐄𝐬 = j𝜔𝜀′𝐄𝐬 + 𝜔𝜀′′𝐄𝐬.

• Sama avaldis elektroodide vahelise pinge ja voolutugevuste kohta 
𝑖 𝑡 = 𝐵𝑐 + 𝐺𝐶 𝑢 𝑡 ,

kus kaojuhtivus on

𝐺𝐶 =
𝜔𝜀′′𝑆

𝑙
.

• Vaadeldud katsekeha elektriliseks ekvivalendiks on kondensaatori ja 
takisti rööpühendus. 

u(t)GC



Kadudega keskkond – faasordiagramm

• Voolutihedusel on kaks komponenti.

• Faasinihe voolutiheduse ja elektrivälja tugevuse 
vahel on nüüd väiksem kui π/2 rad.

• Nurka δ voolutiheduse ja tema imaginaarosa 
vahel nimetatakse kaonurgaks.

• Kadude numbriliseks iseloomustamiseks 
kasutatakse kaonurga tangensit

tan 𝛿 =
𝜀′′

𝜀′
.

• Praktikas kasutatakse komponentide 
iseloomustamiseks nende hüvetegurit:  

Im

Re
ES

JdS

δ
jωε’ES

ωε’’ES

𝑄 =
1

tan 𝛿
=

𝑋𝐶
𝐸𝑆𝑅

.



Näide 2 – tasalaine vees

• Sagedusega f = 2,5 GHz laine 
puhtas vees: εr = 78 - j7  ja μr = 1.

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0𝑒
−𝛼𝑧 cos 𝜔𝑡 − 𝛽𝑧

• Kaonurga tangens on 0,0897.

• Sumbetegur α = 21 Np/m ja 
faasikonstant β = 463 rad/m, 
seega lainepikkus λ = 1,36 cm.

• Karakteristlik impedants η = 42,5 
+ 1,9j = 42,6∠2,56° Ω.



Näide 2 – tasalaine vees



Lainelevi juhtivas keskkonnas

• Järgnevalt on vaatluse all keskkonnad, kus vabad laengud saavad 
elektrivälja mõjul liikuda ja põhjustada seega elektrivoolu tekke. 

• Seos elektrivälja tugevuse E ja selle tagajärjel tekkiva voolutiheduse J
vahel oli teatavasti J = σE, kus σ on keskkonna juhtivus. Tekkinud 
voolude tagajärjel kaotab taolises keskkonnas levib elektromagnetlaine 
energiat. 

• Järgnevalt seostame keskkonna juhtivuse σ meile juba tuttava 
dielektrilise läbitavuse imaginaarosaga ε’’.



Lainelevi juhtivas keskkonnas

• Alustame faasorkujul Ampere’i seadusega

∇ × 𝐇𝑠 = j𝜔 𝜀′ − j𝜀′′ 𝐄𝐬 = ωε′′𝐄𝐬 + jω𝜀′𝐄𝐬 .

• Võrdleme saadud tulemust juhtivusvoolu tihedust Js sisaldava kujuga

∇ × 𝐇𝑠 = 𝐉𝐬 + jω𝜀′𝐄𝐬.

• Peame meeles, et Js = σEs, seega 
∇ × 𝐇𝑠 = 𝜎𝐄𝐬 + jω𝜀′𝐄𝐬

• Võrreldes omavahel esimest ja kolmandat avaldist saame seose

𝜀′′ =
𝜎

𝜔
.



Kaod juhtivas keskkonnas - faasordiagramm

• Kaod tekivad nüüd peamiselt materjalis 
indutseeritud juhtivusvoolude tõttu.

• Kaonurga tangensjuhtiva keskkonna korral on

tan 𝛿 =
𝜀′′

𝜀′
=

𝜎

𝜀′𝜔
.

• Näeme, et juhtivus- ja nihkevoolude 
amplituudide suhe on võrdne kaonurga 
tangensiga

𝐽𝜎𝑠
𝐽𝑑𝑠

=
𝜀′′

𝜀′
=

𝜎

𝜔𝜀′
.

Im

Re
ES

JS=(σ + jωε’)ES

δ
JdS = jωε’ES

Jσ = σES



Väikese juhtivusega keskkond

• Kui kaonurga tangens on väike, siis saab materjali elektrilisi omadusi 
aproksimeerida.

• Ligikaudsete avaldiste täpsus on suurusjärgus mõni protsent, kui kaonurga 
tangens on väiksem kui üks kümnendik: tanδ < 0,1. 

• Juhtiva materjali korral, kus  ε’’ = σ/ω

j𝑘 = j𝜔 𝜇𝜀′ 1 − j
𝜎

𝜔𝜀′
,

• Saab aproksimeerimiseks kasutada Newtoni üldistatud binoomvalemit:

1 + 𝑥 = 1 + 𝑥
1
2 = 1 +

𝑥

2
−
𝑥2

8
+
𝑥3

16
−

5

128
𝑥4 +

7

256
𝑥5… .



Levikonstant juhtivas keskkonnas

• Sumbetegur

𝛼 = Re j𝑘 ≈
𝜎

2

𝜇

𝜀′
.

• Faasikonstant

𝛽 = Im j𝑘 ≈ 𝜔 𝜇𝜀′ 1 +
1

8

𝜎

𝜔𝜀′

2

.

• Viimast saab tavaliselt täiendavalt lihtsustada kujule

𝛽 ≈ 𝜔 𝜇𝜀′ .



Karakteristlik impedants juhtivas keskkonnas

• Rakendades Newtoni binoomteoreemi karakteristliku impedantsi 
avaldisele

𝜂 =
𝜇

𝜀′

1

1 − j
𝜎
𝜔𝜀′

,

saame

𝜂 ≈
𝜇

𝜀′
1 −

3

8

𝜎

𝜔𝜀′

2

+ j
𝜎

2𝜔𝜀′
.



Poyntingi teoreem

• John Henry Poynting 1884.

• Alustame Maxwell’i võrrandist (Ampere’i seadus):

∇ × 𝐇 = 𝐉 +
𝜕𝐃

𝜕𝑡
.

• Võttes viimase võrrandi mõlemast poolest korrutise elektrivälja 
tugevusega E saame

𝐄 ∙ ∇ × 𝐇 = 𝐄 ∙ 𝐉 + 𝐄 ∙
𝜕𝐃

𝜕𝑡
.

• Mistahes kahe vektorvälja, näiteks E ja H korral, kehtib järgmine seos:
∇ ∙ 𝐄 × 𝐇 = 𝐇 ∙ ∇ × 𝐄 − 𝐄 ∙ ∇ × 𝐇 .

Foto: https://en.wikipedia.org/



Poyntingi teoreem

• Viimasest kahest saame

𝐇 ∙ ∇ × 𝐄 − ∇ ∙ 𝐄 × 𝐇 = 𝐄 ∙ 𝐉 + 𝐄 ∙
𝜕𝐃

𝜕𝑡
.

• Järgnevalt rakendame seost (Faraday seadus):

∇ × 𝐄 = −
𝜕𝐁

𝜕𝑡
.

• Peale liikmete ümberjärjestamist 

−∇ ∙ 𝐄 × 𝐇 = 𝐄 ∙ 𝐉 + 𝐄 ∙
𝜕𝐃

𝜕𝑡
+ 𝐇

𝜕𝐁

𝜕𝑡
.



Poyntingi teoreem

• Kui eeldame, et keskkonna elektrilised parameetrid ei ole ajas 
muutuvad, siis saame teha järgneva asenduse

𝐄 ∙
𝜕𝐃

𝜕𝑡
= 𝜀𝐄 ∙

𝜕𝐄

𝜕𝑡
.

• Mistahes funktsiooni f(t) korral saab liitfunktsiooni tuletise reeglit 
rakendades näidata, et 

𝑑𝑓2 (𝑡)

𝑑𝑡
= 2𝑓 𝑡

𝑑𝑓 𝑡

𝑑𝑡
.



Poyntingi teoreem

• Viimast seost rakendades saame lihtsustada:

𝐄 ∙
𝜕𝐃

𝜕𝑡
=
𝜀

2

𝜕𝐸2

𝜕𝑡
=

𝜕

𝜕𝑡

𝜀𝐸2

2
.

• Täpselt samast loogikast lähtudes saame ka magnetvälja 
energiatiheduse muudu kujul:

𝐇 ∙
𝜕𝐁

𝜕𝑡
= 𝐇 ∙ 𝜇

𝜕𝐇

𝜕𝑡
=
𝜇

2

𝜕𝐻2

𝜕𝑡
=

𝜕

𝜕𝑡

𝜇𝐻2

2
.



Poyntingi teoreem

• Nüüd on meie avaldis kujul

−∇ ∙ 𝐄 × 𝐇 = 𝐄 ∙ 𝐉 +
𝜕

𝜕𝑡

𝜀𝐸2

2
+
𝜇𝐻2

2
.

• Võtame mõlemast poolest ruumintegraali ja rakendame lisaks vasaku 
poole kohta divergentsi teoreemi, saame

−඾

𝑆

𝐄 × 𝐇 𝑑𝐒 = ම

𝑉

𝐄 ∙ 𝐉𝑑𝑣 +
𝜕

𝜕𝑡
ම

𝑉

𝜀𝐸2

2
+
𝜇𝐻2

2
𝑑𝑣.



Oomilised kaod

• Vaatame eelmisest avaldisest seost

ම

𝑉

𝐄 ∙ 𝐉𝑑𝑣.

• Olgu meil silindriline, ühtlase ristlõikega homogeenne juhtiv keha. 
Olgu elektrivälja tugevus pikki silindrit ühtlane. Sellisel juhul oleks 
potentsiaalide vahe silindri otste vahel U = h·E V.

• Kui silindrit läbib, viimase mõjul, ühtlane voolutihedus J, siis on 
silindrit läbiva voolu tugevus

𝐼 = 𝐽𝑆 = 𝐽π𝑟2 A.

Näeme, et kirjeldame siin sisuliselt takistit.



Oomilised kaod
• Meie näitejuhul on 

ම

𝑉

𝐄 ∙ 𝐉𝑑𝑣 = 𝐸𝐽ℎ𝜋𝑟2 = 𝐸𝐽𝑉 = 𝑈𝐼.

• Pinge mõõtühikuks on volt V, ehk J/C, voolutugevuse omaks amper A 
ehk C/s. Seega korrutise UI dimensiooniks on J/s ehk W.

• Tegemist on oomilise kaoga takistis – elektrienergia muutumisega 
mingiks teiseks energialiigiks, enamasti soojusenergiaks.

• Kui voolu liikumise suund on vastupidine elektrivälja omale, siis on 
„kadu“ negatiivne ehk tegemist on elektrienergia allikaga. 

• Sama kehtib ka mistahes elektrivälja kuju, voolutiheduse jaotuse ja 
ruumi V korral. Ainult konkreetse võimsuse leidmine on siis keerukam.



Elektrivälja salvestunud energia

• Neljandas loengus leidsime, et elektrivälja salvestunud energia on 

𝑊𝐸 =ම

𝑉

𝜀𝐸2

2
𝑑𝑣

• Vaatame nüüd Poyntingi teoreemi parema poole teist liidetavat 
𝜕

𝜕𝑡
ම

𝑉

𝜀𝐸2

2
𝑑𝑣.

• Näeme, et tegemist on elektrivälja salvestunud energia muutusega 
ajas. Dimensionaalselt on jällegi tegemist võimsusega [W]. Viimane ei 
seostu aga mitte energia kulutamisega vaid selle salvestamisega.



Magnetvälja salvestunud energia

• Sarnasel on Poyntingi teoreemi parema poole kolmas liidetav 

𝜕

𝜕𝑡
ම

𝑉

𝜇𝐻2

2
𝑑𝑣

magnetvälja salvestatud energia muutus ajas. Tegemist on jällegi, kas 
magnetvälja täiendava energia salvestamisega või sinna salvestunud 
energia kasutamisega. 

• Kõik need kolm liidetavat kokku näitavad, et elektrienergiat võib 
muuta mõneks teiseks energialiigiks või seda saab salvestada kas 
elektri- või magnetvälja. 



Poyntingi vektor

• Suurust 

𝚷 = 𝐄 × 𝐇
W

m2

nimetatakse Poyntingi vektoriks.

• Poyntingi vektori moodul |Π|näitab pindalaühikut läbiva 
elektromagnetvälja võimsust [W] (võimsuse pindtihedust) ja suund 
näitab energia liikumise (laine levimise) suunda. 

Foto: https://en.wikipedia.org/



Poyntingi vektor ideaalses dielektrikus

• Ideaalses dielektrikus on väljatugevused vastavalt:

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0 cos 𝜔𝑡 − 𝛽𝑧 ;

𝐻𝑦(𝑧, 𝑡) =
𝐸𝑥0
𝜂

cos 𝜔𝑡 − 𝛽𝑧 .

• Poyntingi vektori (z - komponendi) hetkväärtus on seega

𝛱𝑧(𝑧, 𝑡) =
𝐸𝑥0
2

𝜂
cos2 𝜔𝑡 − 𝛽𝑧 .

• Poyntingi vektori keskväärtus ajas

𝛱𝑧 =
𝐸𝑥0
2

2𝜂
.



Näide – tasalaine vees II

• Poyntingi vektori hetkväärtus 
puhtas vees

𝛱𝑧(𝑧, 𝑡) =
𝐸𝑥0
2

𝜂
cos2 𝜔𝑡 − 𝛽𝑧 .

• Võimsustihedus on suunatud 
laine levimise suunas.



Näide – tasalaine vees II



Poyntingi vektor kadudega dielektrikus
• Kadudega dielektrikus on elektrivälja tugevus:

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥0e
−𝛼𝑧 cos 𝜔𝑡 − 𝛽𝑧 .

• Karakteristlik impedants, ehk lainetakistus on sellises keskkonnas 
kompleksne suurus 𝜂 = 𝜂 ∠𝛩𝜂, seega magnetvälja tugevus: 

𝐻𝑦(𝑧, 𝑡) =
𝐸𝑥0
𝜂

e−𝛼𝑧 cos 𝜔𝑡 − 𝛽𝑧 − 𝛩𝜂 .

• Poyntingi vektori hetk- ja keskväärtused on vastavalt:

𝛱𝑧 𝑧, 𝑡 =
𝐸𝑥0
2

2 𝜂
e−2𝛼𝑧 cos 2𝜔𝑡 − 2𝛽𝑧 − 𝛩𝜂 ± cos𝛩𝜂 ;

𝛱𝑧 =
𝐸𝑥0
2

2 𝜂
e−2𝛼𝑧cos𝛩𝜂 .



Näide 2 – tasalaine vees II



Poyntingi vektor faasorkujul

• Poyntingi vektori keskväärtus (ajas) on kergesti leitav väljade 
faasorkujust

𝛱𝑧 =
1

2
Re 𝐄𝐬 × 𝐇𝐬

∗ .



Lainelevi heades juhtides

• Levitegur

𝛾 = j𝑘 = j𝜔 𝜇𝜀′ 1 − j
𝜎

𝜔𝜀′
.

• Heades juhtides on kaonurga tangens 
𝜎

𝜔𝜀′
≫ 1 ja metallides loetakse 

tavaliselt ε’ = ε0.

• Kuna kaonurga tangens on ühest palju suurem saab leviteguri avaldist 
lihtsustada järgmisele kujule

j𝑘 ≈ j𝜔 𝜇𝜀′ −j
𝜎

𝜔𝜀′
= j −j𝜔𝜇𝜎.



Leviteguri väärtus heades juhtides

• Leides kompleksarvu –jωμσ juure saame leviteguri kujul

j𝑘 = 1 + j 𝜋𝑓𝜇𝜎 = 𝛼 + j𝛽.

• Näeme, et sumbetegur α ja faasikonstant β on omavahel võrdsed:

𝛼 = 𝛽 = 𝜋𝑓𝜇𝜎.

• Tasalaine võrrand:

𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥0𝑒
− 𝜋𝑓𝜇𝜎𝑧 cos 𝜔𝑡 − 𝜋𝑓𝜇𝜎𝑧 .

• Juhtivusvoolu tihedus: 

𝐽𝑥 𝑧, 𝑡 = 𝜎𝐸𝑥 𝑧, 𝑡 = 𝜎𝐸𝑥0𝑒
− 𝜋𝑓𝜇𝜎𝑧 cos 𝜔𝑡 − 𝜋𝑓𝜇𝜎𝑧 .



Pinnaefekt
• Nii elektrivälja tugevus, kui ka juhtivusvoolu tihedus kahanevad väärtuseni 
e−1 ≈ 0,368 sügavusel 

𝑧 = 𝛿 =
1

𝛼
=

1

𝜋𝑓𝜇𝜎
.

• Nähtust ennast nimetatakse pinnaefektiks ja suurust δ pinnakihi paksuseks. 

• Pinnaefekti tagajärjel on juhtme aktiivtakistus samuti sagedusest sõltuv.
Sageduse suurenedes väheneb juhtiv pindala ja takistus suureneb võrdeliselt
sagedusega.

• Lisaks suurendab juhtmete takistust täiendavalt veel ka lähedusefekt
(proximity effect). 



Litz’i juhe

Sama ruumala, ja seega sama 
massi ning hinna korral,
saab juhtivat kogupindala 
suurendada, kui kasutada ühe 
juhtme asemel peenikeste 
traatide kimpu – Litz’i juhet 
(Litzendraht).



Pinnaefekt

• Pinnaefekti tõttu väheneb voolutihedus J materjalis sügavuse 
suurenedes eksponentsiaalselt. 

• Saab näidata, et kogu voolutugevus I juhis on sama suur kui oleks 
hüpoteetilisel, konstantse voolutihedusega juhul, olukorras kus vool 
kulgeks ainult kihis paksusega δ.

• Juhul, kui pinnakihi paksus on palju väiksem juhtme diameetrist 2a
(δ << 2a), saab ümarjuhtme takistust leida kui

𝑅 =
𝐿

𝜎2𝜋𝑎𝛿
,

kus L on juhtme pikkus.



Lainelevi heades juhtides

• Faasikiirus

𝑣𝑝 =
𝜔

𝛽
= 𝜔𝛿.

• Lainepikkus λ on seega 

𝜆 =
2π

𝛽
= 2𝜇𝛿.

• Karakteristlik impedants (lainetakistus):

𝜂 =
1

𝜎𝛿
+ j

1

𝜎𝛿
=

2

𝜎𝛿
∠
π

4
.



Lainelevi heades juhtides

• Elektrivälja tugevus

𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥0e
−
𝑧
𝛿 cos 𝜔𝑡 −

𝑧

𝛿
.

• Magnetvälja tugevus

𝐻𝑦 𝑧, 𝑡 =
𝜎𝛿𝐸𝑥0

2
e
−
𝑧
𝛿 cos 𝜔𝑡 −

𝑧

𝛿
−
π

4
.

• Poyntingi vektori keskväärtus

𝛱𝑧 =
𝜎𝛿𝐸𝑥0

2

2 2
e
−2

𝑧
𝛿cos

π

4
=
𝜎𝛿𝐸𝑥0

2

4
e
−2

𝑧
𝛿 .

• Võimsuse pindtihedus juhi pinnast kaugusel δ on kahanenud 13,5 % selle 
väärtusest pinnal. 



Materjalid

• W.H. Hayt, J.A. Buck. Engineering Electromagnetics. 6th ed. 
Üheteistkümnes peatükk.



Lisa A – Kompleksarvu ruutjuur

• Kompleksarvu esitamisel eksponentkujul 

𝑧 = 𝑧 ej𝜑.

on astmele n tõstmine teostatav kui

𝑧𝑛 = 𝑧 𝑛ej𝑛𝜑.

• Ruutjuure leidmine on astendamine suurusega 𝑛 =
1

2
, seega

𝑧 = 𝑧
1
2e

j𝜑
2 = 𝑧 e

j𝜑
2 .



Lisa A – Kompleksarvu ruutjuur

• Kompleksarvu eksponentkujul kehtivat seost saab rakendada 
ruutjuure leidmiseks algebralisel kujul kompleksarvust z = x + yj:

𝑧 = 𝑥 + 𝑦j = 𝑎 + 𝑏j,

kus a ja b on vastavalt ruutjuure real- ja imaginaarosa.

• Tõstes viimase võrrandi mõlemad pooled ruutu saame

𝑥 + 𝑦j = 𝑎 + 𝑏j 2 = 𝑎2 − 𝑏2 + 2𝑎𝑏j.

• Näeme, et tulemuseks on kahe tundmatuga võrrandsüsteem

ቊ
𝑥 = 𝑎2 − 𝑏2

𝑦 = 2𝑎𝑏
.



Lisa A – Kompleksarvu ruutjuur
• Viimast on lihtsam lahendada kui võtame arvesse seose kompleksarvu ja tema 

ruutjuure moodulite vahel

𝑥2 + 𝑦2 = 𝑎2 + 𝑏2.

• Lahendades süsteemi 

൝
𝑥 = 𝑎2 − 𝑏2

𝑥2 + 𝑦2 = 𝑎2 + 𝑏2
,

liitmisvõtte abil saame kompleksarvu z ruutjuure kujul:

𝑧 =
𝑥2 + 𝑦2 + 𝑥

2
± j

𝑥2 + 𝑦2 − 𝑥

2
.

Ruutjuure imaginaarosa märk on sama mis arvul endal.
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