
Application of partial derivatives

Directional derivative

To �nd the directional derivative of z = f(x, y) at the point P in direc-
tion of vector ~s = (∆x; ∆y) we use the formula

∂z

∂~s
=
∂z

∂x
cosα +

∂z

∂y
cos β

where partial derivatives are evaluated at P and directional cosines cosα and

cos β are coordinates of unit vector
−→
s0 in direction of vector ~s, i.e.

−→
s0 =

(
∆x

∆~s
;
∆y

∆~s

)
= (cosα; cos β)

The directional derivative of function of three variables w = f(x, y, z) will
be evaluated by the formula

∂w

∂~s
=
∂w

∂x
cosα +

∂w

∂y
cos β +

∂w

∂z
cos γ

1. Find the derivative z = x3 − 3x2y + 3xy2 + 1 at the point M(3; 1)
towards the point N(6; 5)

Solution

First we evaluate partial derivatives at M

∂z

∂x
= 3x2 − 6xy + 3y2

∣∣∣∣
M(3;1)

= 12

and
∂z

∂y
= −3x2 + 6xy

∣∣∣∣
M(3;1)

= −9

Next, the length on vector ~s =
−−→
MN = (3; 4) is ∆~s = 5. Consequently

directionl cosines are

(cosα; cos β) =

(
3

5
;
4

5

)
and by the formula

∂z

∂~s
= 12 · 3

5
− 9 · 4

5
= 0
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2. Find the derivative z = ln(ex + ey) at the origin in the direction that
forms the angle 30◦ with x-axis.

Solution
∂z

∂x
=

ex

ex + ey

∣∣∣∣
O(0;0)

=
1

2

∂z

∂y
=

ey

ex + ey

∣∣∣∣
O(0;0)

=
1

2

−→
s0 = (cos 30◦; cos 60◦) =

(√
3

2
;
1

2

)
∂z

∂~s
=

√
3 + 1

4

3. Find the derivative z = arctan(xy) at point P (1; 1) in direction of the
bisectrix of the �rst quarter of coordinate plane.

Solution

x

y

P

−→s

1

1

First we evaluate partial derivatives at P

∂z

∂x
=

y

1 + x2y2

∣∣∣∣
P

=
1

2

∂z

∂y
=

x

1 + x2y2

∣∣∣∣
P

=
1

2
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The angle between bisectrix of the �rst quarter of coordinate plane and
x-axis (y-axis) is 45◦, so

−→
s0 = (cos 45◦; cos 45◦) =

(√
2

2
;

√
2

2

)

and by the formula

∂z

∂~s
=

1

2
·
√

2

2
+

1

2
·
√

2

2
=

√
2

2

4. Find the derivative w = xyz at point A(5; 1; 2) in direction that leads
from A to B(9; 4; 14).

Solution

Partial derivatives of w at A are

∂w

∂x
= yz

∣∣∣∣
A

= 2

∂w

∂y
= xz

∣∣∣∣
A

= 10

∂w

∂z
= xy

∣∣∣∣
A

= 5

The length of direction vector ~s =
−→
AB = (4; 3; 12) is 13, i.e. directional

cosines are

(cosα; cos β; cos γ) =

(
4

13
;

3

13
;
12

13

)
and according to the formula for three-dimensional case

∂z

∂~s
= 2 · 4

13
+ 10 · 3

13
+ 5 · 12

13
=

98

13
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5. Find the derivative w = sin(yz)+lnx2 at point (1; 1;π) in the direction
of vector −→s = (1; 1;−1).

Solution
∂w

∂x
=

2

x

∣∣∣∣
(1;1;π)

= 2

∂w

∂y
= z cos(yz)

∣∣∣∣
(1;1;π)

= −π

∂w

∂z
= y cos(yz)

∣∣∣∣
(1;1;π)

= −1

∆~s =
√

1 + 1 + 1 =
√

3

−→
s0 =

(
1√
3

;
1√
3

;− 1√
3

)
∂w

∂~s
= 2 · 1√

3
− π · 1√

3
+ 1 · 1√

3
=

3− π√
3

6. Find the derivative w = xy2 + z3 − xyz at point (2; 1; 1) in the di-
rection that forms the angles 60◦, 45◦ and 60◦ with x-, y- and z-axes,
respectively.

Solution
∂w

∂x
= y2 − yz

∣∣∣∣
(2;1;1)

= 0

∂w

∂y
= 2xy − xz

∣∣∣∣
(2;1;1)

= 2

∂w

∂z
= 3z2 − xy

∣∣∣∣
(2;1;1)

= 1

−→
s0 =

(
1

2
;

√
2

2
;
1

2

)
∂w

∂~s
=
√

2 +
1

2
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Gradient of scalar �eld

The gradient of scalar �eld z = f(x, y) is

grad z =

(
∂z

∂x
,
∂z

∂y

)
The gradient of scalar �eld w = f(x, y, z) is

gradw =

(
∂w

∂x
,
∂w

∂y
,
∂w

∂z

)
7. Find the gradient of scalar �eld z =

√
4 + x2 + y2 at the point A(2; 1)

Solution We �nd the partial derivatives

∂z

∂x
=

1

2
√

4 + x2 + y2
· 2x =

x√
4 + x2 + y2

and
∂z

∂y
=

1

2
√

4 + x2 + y2
· 2y =

y√
4 + x2 + y2

Now, grad z at A(2; 1) is

grad z =

(
x√

4 + x2 + y2
;

y√
4 + x2 + y2

)∣∣∣∣
A

=

(
2

3
;
1

3

)

8. Find the gradient of scalar �eld z = arcsin
x

x+ y
at the point B(1; 1)

9. Find grad z for z = arctan
y

x
Solution

grad z =

(
− y

x2 + y2
;

x

x2 + y2

)
10. Find gradu for u =

√
x2 + y2 + z2

Solution

grad z =

(
x√

x2 + y2 + z2
;

y√
x2 + y2 + z2

;
z√

x2 + y2 + z2

)
=

1√
x2 + y2 + z2

(x; y; z)

For exercises 5., 6. and 7. let's recall a conclusion: the directional deri-

vative has the greatest value in the direction of the gradient and equals

to the length of the gradient.
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11. Find the greatest ascent on the surface z = xy at the point (2; 2; 4)

Solution. Let us �nd the gradient at (2; 2)

grad z = (yxy−1;xy lnx)

∣∣∣∣
(2;2)

= (4; 4 ln 2)

and the length of this vector

| grad z| = 4
√

1 + ln2 2

This length is the greatest ascent on the surface.

12. Find the greatest rate of growth of z = ln(x2 + 4y2) at the point
(6; 4; ln 100)

Solution. The gradient

grad z =

(
2x

x2 + 4y2
;

8y

x2 + 4y2

) ∣∣∣∣
(6;4)

=

(
3

25
;

8

25

)
=

1

25
(3; 8)

and the length of gradient

| grad z| =
√

73

25

is the greatest rate of growth at (6; 4; ln 100).

13. Find the greatest rate of change of w = x sin z − y cos z at the point
O(0; 0; 0)

Solution. The gradient

gradw = (sin z;− cos z;x cos z + y sin z)

∣∣∣∣
O

= (0;−1; 0)

and the length of gradient | gradw| = 1 is the greatest rate of change
at the origin.
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Divergence and curl of vector �eld

The divergence of a vector �eld

−→
F = (X(x, y, z);Y (x, y, z);Z(x, y, z))

is the scalar

div
−→
F =

∂X

∂x
+
∂Y

∂y
+
∂Z

∂z

and the curl of vector �eld
−→
F is the vector

curl
−→
F =

(
∂Z

∂y
− ∂Y

∂z
;
∂X

∂z
− ∂Z

∂x
;
∂Y

∂x
− ∂X

∂y

)

14. Find the divergence and curl of vector �eld
−→
F = (x2yz;xy2z;xyz2)

Solution.

In this exercise X = x2yz, Y = xy2z and Z = xyz2. Thus, the diver-
gence

div
−→
F =

∂

∂x
(x2yz)+

∂

∂y
(xy2z)+

∂

∂z
(xyz2) = 2xyz+2xyz+2xyz = 6xyz

and the curl

curl
−→
F =

(
∂

∂y
(xyz2)− ∂

∂z
(xy2z);

∂

∂z
(x2yz)− ∂

∂x
(xyz2);

∂

∂x
(xy2z)− ∂

∂y
(x2yz)

)
=

= (xz2 − xy2;x2y − yz2; y2z − x2z) = (x(z2 − y2); y(x2 − z2); z(y2 − x2))

15. Find the divergence and curl of vector �eld
−→
F = (x(y+z); y(x+z); z(x+

y))

Answer.

div
−→
F = 2(x+ y + z)

curl
−→
F = (z − y;x− z; y − x)

16. Find div gradw and curl gradw for scalar �eld w = ln(x2 + y2 + z2)

Solution.

gradw =

(
2x

x2 + y2 + z2
;

2y

x2 + y2 + z2
;

2z

x2 + y2 + z2

)
∂

∂x

(
2x

x2 + y2 + z2

)
=

2(x2 + y2 + z2)− 2x · 2x
(x2 + y2 + z2)2

=
2(y2 + z2 − x2)
(x2 + y2 + z2)2
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∂

∂y

(
2y

x2 + y2 + z2

)
=

2(x2 + y2 + z2)− 2y · 2y
(x2 + y2 + z2)2

=
2(x2 + z2 − y2)
(x2 + y2 + z2)2

∂

∂z

(
2z

x2 + y2 + z2

)
=

2(x2 + y2 + z2)− 2z · 2z
(x2 + y2 + z2)2

=
2(x2 + y2 − z2)
(x2 + y2 + z2)2

div gradw =
2(y2 + z2 − x2 + x2 + z2 − y2 + x2 + y2 − z2)

(x2 + y2 + z2)2

div gradw =
2(x2 + y2 + z2)

(x2 + y2 + z2)2
=

2

x2 + y2 + z2

First coordinate of curl vector

∂

∂y

(
2z

x2 + y2 + z2

)
− ∂

∂z

(
2y

x2 + y2 + z2

)
=

2z ·
(
− 1

(x2 + y2 + z2)2

)
· 2y − 2y

(
− 1

(x2 + y2 + z2)2

)
· 2z = 0

curl gradw = (0; 0; 0)

Gradient �eld is irrotational.

17. Find div(w
−→
F ) if w = ϕ(x, y, z) is scalar �eld

−→
F = (X, Y, Z) is vector

�eld.

Solution.

div(w
−→
F ) = div(wX;wY ;wZ) =

∂

∂x
(wX) +

∂

∂y
(wY ) +

∂

∂z
(wZ) =

=
∂w

∂x
·X + w

∂X

∂x
+
∂w

∂y
· Y + w

∂Y

∂y
+
∂w

∂x
· Z + w

∂Z

∂z
=

=
∂w

∂x
·X +

∂w

∂y
· Y +

∂w

∂x
· Z + w

(
∂X

∂x
+
∂Y

∂y
+
∂Z

∂z

)
=

= gradw ·
−→
F + w · div

−→
F

18. Find curl(
−→
F × −→c ) if

−→
F = (X, Y, Z) and −→c = (c1; c2; c3) is a constant

vector.
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19. Prove that curl(w
−→
F ) = gradw ×

−→
F + w · curl

−→
F

20. Prove that curl curl
−→
F = grad div

−→
F −∆

−→
F

Local extrema of function of two variables

Let P0 = (x0; y0) be a stationary point of function z = f(x, y), i.e.
a solution of the system of equations

∂z

∂x
= 0

∂z

∂y
= 0

Let us denote the values of second order partial derivatives at P0

A =
∂2z

∂x2

∣∣∣∣
P0

, B =
∂2z

∂x∂y

∣∣∣∣
P0

and C =
∂2z

∂y2

∣∣∣∣
P0

Su�cient conditions for existence of a local extremum.

1. If AC − B2 > 0 and A < 0 then the function z = f(x, y) has a
local maximum at P0.

2. If AC − B2 > 0 and A > 0 then the function z = f(x, y) has a
local minimum at P0.

3. If AC − B2 < 0 then the function z = f(x, y) has no local extre-
mum at P0. The point P0 is called the saddle point of function
z = f(x, y).

21. Find local extrema of function z = 4(x− y)− x2 − y2

Solution. Partial derivatives

∂z

∂x
= 4− 2x

∂z

∂y
= −4− 2y

The system of equations {
4− 2x = 0
−4− 2y = 0
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has one solution {
x = 2
y = −2

i.e. the function has one stationary point P0(2;−2)

∂2z

∂x2
= −2,

∂2z

∂x∂y
= 0 and

∂2z

∂y2
= −2

A = −2, B = 0 and C = −2

To apply the theorem, we evaluate

AC −B2 = −2 · (−2)− 02 = 4

Hence AC − B2 > 0 and A < 0 and by the �rst statement of theorem
the function has a local maximum at (2;−2)

Answer. The function has at (2;−2) a local maximum zmax = 8

22. Find local extrema of function z = x2 + xy + y2 + x− y + 1

Solution. Partial derivatives

∂z

∂x
= 2x+ y + 1

∂z

∂y
= x+ 2y − 1

The system of equations {
2x+ y + 1 = 0
x+ 2y − 1 = 0

has one solution x = −1 and y = 1, i.e. there is one stationary point
P (−1; 1). Second order partial derivatives

∂2z

∂x2
= 2,

∂2z

∂x∂y
= 1 and

∂2z

∂y2
= 2

Because all of these three are constants (does not depend on point), we
have

A = 2, B = 1 and C = 2
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To apply the theorem, we evaluate

AC −B2 = 2 · 2− 12 = 3

Hence AC−B2 > 0 and A > 0 and by the second statement of theorem
the function has a local minimum at (−1; 1) and this local minimum
equals

zmin = 0

23. Find local extrema of function z = x3 + y2 − 6xy − 39x+ 18y + 20

Solution. Partial derivatives

∂z

∂x
= 3x2 − 6y − 39

∂z

∂y
= 2y − 6x+ 18

To �nd stationary points, we need to solve the system of equations{
3x2 − 6y − 39 = 0
2y − 6x+ 18 = 0

which is equivalet to {
x2 − 2y − 13 = 0
y − 3x+ 9 = 0

We solve the second equation for y, y = 3x − 9 and substitute y into
the �rst equation. The result is a quadratic equation

x2 − 2(3x− 9)− 13 = 0

or
x2 − 6x+ 5 = 0

which has two roots x1 = 1 and x2 = 5. Related values of y are y1 = −6
and y2 = 6. Hence, this function has two stationary points P1(1;−6)
and P2(5; 6)

Next, second order partial derivatives

∂2z

∂x2
= 6x,

∂2z

∂x∂y
= −6 and

∂2z

∂y2
= 2

We have two constants constants

B = −6 and C = 2
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For the �rst point P1(1;−6) the value of A will be A = 6 · 1 = 6 and

AC −B2 = 6 · 2− (−6)2 = −24

According to the third statement of theorem the function has no local
extremum at P1(1;−6) or this point is a saddle point of function given.

For the second stationary point P2(5; 6) the value of A will be A =
6 · 5 = 30 and

AC −B2 = 30 · 2− (−6)2 = 24

According to the second statement of theorem the function has a local
minimum at P2(5; 6) and this local minimum equals

zmin = −86

24. Find local extrema of function z = x3 + 3xy2 − 15x− 12y

Solution. Partial derivatives

∂z

∂x
= 3x2 + 3y2 − 15

∂z

∂y
= 6xy − 12

To �nd stationary points, we have to to solve the system of equations{
3x2 + 3y2 − 15 = 0

6xy − 12 = 0

which is equivalet to {
x2 + y2 − 5 = 0
xy − 2 = 0

To use substitution, we solve the second equation for y, y =
2

x
and

substitute y into the �rst equation. The result is the equation

x2 +
4

x2
− 5 = 0

or
x4 − 5x2 + 4 = 0

This is a quadratic equation with respect to x2 and has two roots x2 = 1
and x2 = 4. So we have four di�erent roots of the equation x1 = 1,
x2 = −1, x3 = 2 and x4 = −2. Related values of y are y1 = 2 and
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y2 = −2, y3 = 1 and y4 = −1. Hence, this function has four stationary
points P1(1; 2), P2(−1;−2), P3(2; 1) and P4(−2;−1)

Second order partial derivatives

∂2z

∂x2
= 6x,

∂2z

∂x∂y
= 6y and

∂2z

∂y2
= 6x

For the �rst stationary point P1(1; 2) we get A = 6·1 = 6, B = 6·2 = 12
and C = 6 · 1 = 6. To apply the theorem we evaluate

AC −B2 = 6 · 6− 122 = −108

and by theorem P1(1; 2) is a saddle point of the function.

For the second stationary point P1(−1;−2) we get A = 6 · (−1) = −6,
B = 6 · (−2) = −12 and C = 6 · (−1) = −6. We evaluate again

AC −B2 = −6 · (−6)− (−12)2 = −108

to conclude that P2(−1;−2) is another saddle point of the function.

For the third stationary point P3(2; 1) we get A = 6 · 2 = 12, B =
6 · 1 = 6 and C = 6 · 2 = 12. Let us evaluate

AC −B2 = 12 · 12− 62 = 108

So, AC − B2 > 0 and A > 0 and the function has at P3(2; 1) a local
minimum zmin = −28

For the fourth stationary point P4(−2;−1) we get A = 6 · (−2) = −12,
B = 6 · (−1) = −6 and C = 6 · (−2) = −12. In this case

AC −B2 = (−12) · (−12)− (−6)2 = 108

So, AC−B2 > 0 and A < 0 and the function has at P4(−2;−1) a local
maximum zmax = 28

25. Find local extrema of function z = lnx+ ln y +
2

x2
+

8

y2

26. Prove that the function z = x2 + xy + y2 +
a3

x
+
a3

y
has at the point(

a
3
√

3
;
a
3
√

3

)
local minimum.
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