Application of partial derivatives

Directional derivative

To find the directional derivative of z = f(z,y) at the point P in direc-
tion of vector § = (Ax; Ay) we use the formula

0z 0z N 0z 3
— = — COS Q& + — COos
05 O oy
where partial derivatives are evaluated at P and directional cosines cos a and

cos [ are coordinates of unit vector s” in direction of vector s, i.e.
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The directional derivative of function of three variables w = f(z,y, z) will
be evaluated by the formula
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1. Find the derivative z = z* — 32y + 3zy® + 1 at the point M (3;1)
towards the point N(6;5)
Solution

First we evaluate partial derivatives at M

0
9% 302 — 6ay + 32 — 12
Ox M(3;1)
and 5
92 _ 342 + 6xy =-9
Ay M(3;1)

—
Next, the length on vector § = MN = (3;4) is As = 5. Consequently

directionl cosines are
3 4
(cosa;cos f) = (g, 5)

and by the formula



2. Find the derivative z = In(e” + e¥) at the origin in the direction that
forms the angle 30° with z-axis.

Solution
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0 e | _1
dy e +eY 0(0:0) 2
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3. Find the derivative z = arctan(zy) at point P(1;1) in direction of the
bisectrix of the first quarter of coordinate plane.

Solution
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v

First we evaluate partial derivatives at P

2y | _1
or  1+4+a2%y?|, 2
0z_ _ = | _1
Jy 1+az2y2|, 2




The angle between bisectrix of the first quarter of coordinate plane and
r-axis (y-axis) is 45°, so

3 = (cos45%; cos 45°) = (
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and by the formula
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. Find the derivative w = xyz at point A(5;1;2) in direction that leads
from A to B(9;4;14).

Solution

Partial derivatives of w at A are

ow

b 92
ox yZA
a—w:xz =10
oy A

ow

_— = :5
0z xyA

The length of direction vector § = AB = (4;3;12) is 13, i.e. directional
cosines are
( 5 ) 4 3 12
cosa;cos B5cosy) = | —=;—; —
GEREER =13 137 13
and according to the formula for three-dimensional case

0z 4 3 12 98
L _9. 110 = 22
s 13+0 13+5 13 13



5. Find the derivative w = sin(yz)+1In z? at point (1;1;7) in the direction
of vector & = (1;1; —1).

Solution
ow 2
_— = = — 2
Oz = (L1;m)
ow
— = zcos(yz) = -7
0y (L;1;m)
0
7o ycos(yz) =-1
0z (L;15m)
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6. Find the derivative w = xy? + 23 — zyz at point (2;1;1) in the di-
rection that forms the angles 60°, 45° and 60° with x-, y- and z-axes,
respectively.

Solution 5
v y? —yz =0
Oz (2;151)
0
v 2y — w2 =2
dy (2;151)
0
70 _32 Ty =1
0z (2;151)
= 1 v21
PO B e P
27272
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55 = V215



10.

Gradient of scalar field

The gradient of scalar field z = f(z,y) is

rad z = % %

& -\ 0z’ Oy

The gradient of scalar field w = f(x,y, 2) is
radw = 8_w (9_11) 8_w
& ~\ oz’ 9y’ Iz

Find the gradient of scalar field z = /4 + 22 4+ y? at the point A(2;1)
Solution We find the partial derivatives

0z 1 T

— = —

Ox  2\/4+ a2 + 12 V44 2?2+ y?
and

0z 1 Y

= = oy = 7
Ay 2\/4 + 22 4 42 Y V4 + 22 + g2

Now, grad z at A(2;1) is
(2_ 1)
A 33

at the point B(1;1)

grad z = ‘ ; Y
Va+at+y? A+ a4y

Find the gradient of scalar field z = arcsin

r+y

Find grad z for z = arctan J
x

Solution

T
gradz:(— 2y 5 2)
e+ ys xt+y

Find gradu for u = /22 + 32 + 22

Solution

1
grad z = ’ ; Y ; : = (z;9; 2)
\/x2+y2+22 \/x2+y2+z2 \/x2+y2+22 /x2+y2+22

For exercises 5., 6. and 7. let’s recall a conclusion: the directional deri-
vative has the greatest value in the direction of the gradient and equals
to the length of the gradient.



11. Find the greatest ascent on the surface z = a¥ at the point (2;2;4)
Solution. Let us find the gradient at (2;2)

grad z = (yz¥'; 2¥In ) = (4;41n2)
(2;2)

and the length of this vector

| grad z| = 4V 1+ 1n2

This length is the greatest ascent on the surface.

12. Find the greatest rate of growth of z = In(z? + 49?) at the point

(6;4;1n100)
Solution. The gradient

2 8
grad z = ’ ; Y
x? + 4y?’ 2?2 + 4y?

and the length of gradient

3 8 ) 1
=== ) ==(3:8)
o (25 25) ~ 25

VT3

dz| = L2
|grad 2| = <

is the greatest rate of growth at (6;4;1n 100).

13. Find the greatest rate of change of w = xsinz — ycos z at the point

0(0;0;0)
Solution. The gradient

gradw = (sin z; —cos z;x cos z + ysinz)| = (0; —1;0)
0

and the length of gradient |gradw| = 1 is the greatest rate of change

at the origin.



14.

15.

16.

Divergence and curl of vector field

The divergence of a vector field
F = (X(2,,2)Y (@, 2); 22y, 2))

is the scalar
? 0X LY 5)4 492 oz
oz dy 0z
and the curl of vector field ? is the vector
P (02 _0Y 0X 0z 0v _ox
~\dy 02’0z Ox’ dr Oy

div

Find the divergence and curl of vector field = (22yz; 2y’z; wy2?)
Solution.

In this exercise X = 2%yz, Y = 2y?2 and Z = xyz?. Thus, the diver-
gence

0 0
le? (2*yz +8_(ny2) 5 —(wy2?) = 2xyz+22y2z+2wY2 = 61Y*2
Y 2z

and the curl

cul P = () = @) S = e o) = (@ yz>) -
= (22 —ayhia’y —yetiyte — a%2) = (2(2" — y7)iy(a® — &%) 2(y” — 2%)
Find the divergence and curl of vector field F = x(y+2);y(z+2); z(z+
Y)
Answer.
div F =2(z +y+ 2)
curl B = (z—y;x—z;y — )
Find div grad w and curl grad w for scalar field w = In(2? + y? + 2?)

Solution.

( 2 2y 2z )
gradw = ; ;

22 +y? 22 2 y? 4 22 a? 4y 2P

0 2z 2y 427 -2z 2 2y + 2% —a2?)
or a72—|—y2—|—z2 o (x2+y2+22)2 o (m2+y2+22)2
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0 2y 242 - 2y-2y 2P+ 22 —yP)
Oy \ 22 + y2 + 22 - (22 + o2 + 22)2 - (22 + o2 + 22)2
0 2z 2@+ P4 — 2222 2@ +yt - 20)
Oz \ 22+ y2+22) (22 4+ y2 + 22)2 (22 4y 22)2
, 202+ 22— + 22 + 22—y + 2t +y? - 2P)
divgradw =
(22 + y2 + 22)?
22 4 2+ 22 9
divgradw = (" +y + =) =
(CCQ—f—yQ +Z2)2 $2+y2 +Z2
First coordinate of curl vector
0 2z 0 2y B
Oy \ 22 + y2 + 22 Oz \ 22 +y2+22)

1

1
2+ .| —
Z((ﬁ+ﬁ+%ﬁ

)'Qy_zy(_(x2+y2+z2>2

).222

curl grad w = (0; 0;0)

Gradient field is irrotational.

17. Find div(w?) if w = ¢(x,y, z) is scalar field = (X,Y, Z) is vector

field.

Solution.

divwF) = div(wX;wV;w?) = (%(wX) + a%um + %(MZ) _
= %'X+w%+%’y+w%+%'z+w%f:
_ Z_Z.X+g—z.y+g—‘: Z+w(%—f+g—z+g—5>=

gradw-?—kw-div?

18. Find curl(? x @) if = (X,Y,Z) and @ = (¢1;¢2; ¢3) is a constant
vector.



19. Prove that Curl(w?) = grad w X F +w - curl B

20. Prove that curl curl ? = grad div ? — A?

Local extrema of function of two variables

Let Py = (z0;yo) be a stationary point of function z = f(z,y), i.e.
a solution of the system of equations

0z
%—O
0z
8_y_0

Let us denote the values of second order partial derivatives at P,

2
and C = 8—§
PO ay PO

0%z
. ~ Oxdy

o
- Ox2

A

Sufficient conditions for existence of a local extremum.

1. If AC — B*> > 0 and A < 0 then the function z = f(z,y) has a

local maximum at F,.

2. If AC — B? > 0 and A > 0 then the function z = f(z,y) has a
local minimum at Fp.

3. If AC' — B? <0 then the function z = f(z,y) has no local extre-
mum at Fy. The point Fy is called the saddle point of function

Z = f(may>'

21. Find local extrema of function z = 4(z — y) — 2% — ¢?
Solution. Partial derivatives
0z 0z
—=4-2 — =42
ox . dy Y

The system of equations

4—-2x=0
—4—-2y=0



22,

has one solution

9%z 0%z 0%z
Ox? " 0xdy an oy?

A=-2, B=0 and C =-2
To apply the theorem, we evaluate
AC - B?>=-2-(-2)—-0*=4

Hence AC' — B? > 0 and A < 0 and by the first statement of theorem
the function has a local maximum at (2; —2)

Answer. The function has at (2; —2) a local maximum z,,,, = 8

Find local extrema of function z = 22 + 2y + > + o —y + 1

Solution. Partial derivatives

0
—Z:2x+y+1
Ox

0z
—=x+2y—1

dy Y
The system of equations

20 +y+1=0
e +2—1=0

has one solution x = —1 and y = 1, i.e. there is one stationary point
P(—1;1). Second order partial derivatives
0z 0?2z 0z

gE_9 —1 and 22 =9
Ox? " 0xdy a oy?

Because all of these three are constants (does not depend on point), we

have
A=2 B=1 and C=2

10



23.

To apply the theorem, we evaluate
AC-B*=2.2-1*=3

Hence AC'— B? > 0 and A > 0 and by the second statement of theorem
the function has a local minimum at (—1;1) and this local minimum
equals

Zmin — 0

Find local extrema of function 2z = 23 + y? — 6zy — 392 + 18y + 20

Solution. Partial derivatives

0z

— = 32* — 6y — 39
ox v 4

%,

% oy —6r+18
dy

To find stationary points, we need to solve the system of equations

322 — 6y —39 =0
2y — 6z + 18 =0

which is equivalet to

22 —2y—13=0
y—32+9=0

We solve the second equation for y, y = 3z — 9 and substitute y into
the first equation. The result is a quadratic equation

7 —2(32—-9)—13=0
or
2> —6x+5=0

which has two roots z; = 1 and x5 = 5. Related values of y are y; = —6
and y, = 6. Hence, this function has two stationary points P;(1; —6)
and P»(5;6)

Next, second order partial derivatives

0%z 0%z 0%z
@_6%‘7 axay__6 and a_y2_2

We have two constants constants

B=—-6 and C =2

11



24.

For the first point P;(1; —6) the value of A willbe A=6-1=6 and

AC - B?*=6-2—(—6)* = -24

According to the third statement of theorem the function has no local
extremum at P;(1; —6) or this point is a saddle point of function given.

For the second stationary point P5(5;6) the value of A will be A =
6-5 =30 and
AC - B*=30-2—(—6)* =24

According to the second statement of theorem the function has a local
minimum at P»(5;6) and this local minimum equals

Zmin = — 86

Find local extrema of function z = 2% 4 3zy? — 152 — 12y
Solution. Partial derivatives

9
% 3224 32— 15
ox

0z
2 = Gy — 12
dy vy

To find stationary points, we have to to solve the system of equations

322 +3y> —15=0
6zry — 12 =0

which is equivalet to
?+y?=5=0
zy—2=0

2
To use substitution, we solve the second equation for y, y = — and
x

substitute y into the first equation. The result is the equation

, 4
x+—2—5:0
T

or
a2t =52 4+4=0

This is a quadratic equation with respect to 22 and has two roots 2% = 1
and 22 = 4. So we have four different roots of the equation z; = 1,
Ty = —1, x3 = 2 and x4 = —2. Related values of y are y; = 2 and

12



Yo = —2, y3 = 1 and y, = —1. Hence, this function has four stationary
points Pi(1;2), Po(—1;—2), P3(2;1) and Py(—2;—1)

Second order partial derivatives
0%z 0%z 0%z

77 _¢ —6y and 22 =6
Ox? © Oxdy yoan oy? ¢

For the first stationary point P;(1;2) weget A=6-1=6, B =6-2 =12
and C' =6-1=6. To apply the theorem we evaluate

AC — B?2=6-6—122=—108

and by theorem P;(1;2) is a saddle point of the function.
For the second stationary point P;(—1; —2) we get A =6-(—1) = —6,
B=6-(-2)=—-12and C =6-(—1) = —6. We evaluate again

AC — B? = —6-(—6) — (—12)* = —108

to conclude that Py(—1; —2) is another saddle point of the function.
For the third stationary point P3(2;1) we get A = 6-2 = 12, B =
6-1=6and C =6-2=12. Let us evaluate
AC - B*=12-12—6" =108

So, AC' — B? > 0 and A > 0 and the function has at P(2;1) a local
minimum Z2,,;, = —28
For the fourth stationary point Py(—2;—1) we get A =6-(—2) = —12,
B=6-(—1)=—6and C =6-(—2) = —12. In this case

AC — B? = (—12) - (—12) — (—6)* = 108

So, AC'— B?* > 0 and A < 0 and the function has at Py;(—2; —1) a local
maximum 2z,,q, = 28

2
25. Find local extrema of function z =Inz +Iny + — + —
=y

3 3

26. Prove that the function z = 2% + 2y + y? + T+ % has at the point
T Y

) local minimum.
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