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For example, if you toss a coin 100 times and want to find out the probability of obtaining
60 heads, you put p = 0.5, n = 100 and x = 60 in the above formula. Computer routines
exist to evaluate such probabilities.

You can see how the binomial distribution is a generalization of the Bernoulli
distribution.

The Poisson Distribution
A random X variable is said to have the Poisson distribution if its PDF is:

f (X) = e−λλx

x!
for x = 0, 1, 2, . . . , λ > 0

The Poisson distribution depends on a single parameter, λ. A distinguishing feature of the
Poisson distribution is that its variance is equal to its expected value, which is λ. That is,

E(X) = var (X) = λ

The Poisson model, as we saw in the chapter on nonlinear regression models, is used to
model rare or infrequent phenomena, such as the number of phone calls received in a span
of, say, 5 minutes, or the number of speeding tickets received in a span of an hour, or the
number of patents received by a firm, say, in a year.

A.7 Statistical Inference: Estimation

In Section A.6 we considered several theoretical probability distributions. Very often we
know or are willing to assume that a random variable X follows a particular probability dis-
tribution but do not know the value(s) of the parameter(s) of the distribution. For example,
if X follows the normal distribution, we may want to know the value of its two parameters,
namely, the mean and the variance. To estimate the unknowns, the usual procedure is to
assume that we have a random sample of size n from the known probability distribution and
use the sample data to estimate the unknown parameters.5 This is known as the problem of
estimation. In this section, we take a closer look at this problem. The problem of estima-
tion can be broken down into two categories: point estimation and interval estimation.

Point Estimation
To fix the ideas, let X be a random variable with PDF f (x; θ), where θ is the parameter of
the distribution (for simplicity of discussion only, we are assuming that there is only one
unknown parameter; our discussion can be readily generalized). Assume that we know the
functional form—that is, we know the theoretical PDF, such as the t distribution—but do
not know the value of θ . Therefore, we draw a random sample of size n from this known
PDF and then develop a function of the sample values such that

θ̂ = f (x1, x2, . . . , xn)

provides us an estimate of the true θ. θ̂ is known as a statistic, or an estimator, and a par-
ticular numerical value taken by the estimator is known as an estimate. Note that θ̂ can be

5Let X1, X2, . . . , Xn be n random variables with joint PDF f (x1, x2, . . . , xn). If we can write

f (x1, x2, . . . , xn) = f (x1) f (x2) · · · f (xn)

where f (x) is the common PDF of each X, then x1, x2, . . . , xn are said to constitute a random sample
of size n from a population with PDF f (xn).
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824 Appendix A A Review of Some Statistical Concepts

treated as a random variable because it is a function of the sample data. θ̂ provides us with
a rule, or formula, that tells us how we may estimate the true θ. Thus, if we let

θ̂ = 1

n
(x1 + x2 + · · · + xn) = X̄

where X̄ is the sample mean, then X̄ is an estimator of the true mean value, say, µ. If in a
specific case X̄ = 50, this provides an estimate of µ. The estimator θ̂ obtained previously is
known as a point estimator because it provides only a single (point) estimate of θ.

Interval Estimation
Instead of obtaining only a single estimate of θ, suppose we obtain two estimates of θ by
constructing two estimators θ̂1(x1, x2, . . . , xn) and θ̂2(x1, x2, . . . , xn), and say with some
confidence (i.e., probability) that the interval between θ̂1 and θ̂2 includes the true θ. Thus,
in interval estimation, in contrast with point estimation, we provide a range of possible
values within which the true θ may lie.

The key concept underlying interval estimation is the notion of the sampling, or
probability distribution, of an estimator. For example, it can be shown that if a variable
X is normally distributed, then the sample mean X̄ is also normally distributed with
mean = µ (the true mean) and variance = σ 2/n, where n is the sample size. In other words,
the sampling, or probability, distribution of the estimator X̄ is X̄ ∼ N (µ, σ 2/n). As a
result, if we construct the interval

X̄ ± 2
σ√
n

and say that the probability is approximately 0.95, or 95 percent, that intervals like it will in-
clude the true µ, we are in fact constructing an interval estimator for µ. Note that the interval
given previously is random since it is based on X̄ , which will vary from sample to sample.

More generally, in interval estimation we construct two estimators θ̂1 and θ̂2, both
functions of the sample X values, such that

Pr (θ̂1 ≤ θ ≤ θ̂2) = 1 − α 0 < α < 1

That is, we can state that the probability is 1 − α that the interval from θ̂1 to θ̂2 contains the
true θ. This interval is known as a confidence interval of size 1 − α for θ , 1 − α being
known as the confidence coefficient. If α = 0.05, then 1 − α = 0.95, meaning that if we
construct a confidence interval with a confidence coefficient of 0.95, then in repeated such
constructions resulting from repeated sampling we shall be right in 95 out of 100 cases if
we maintain that the interval contains the true θ. When the confidence coefficient is 0.95,
we often say that we have a 95 percent confidence interval. In general, if the confidence
coefficient is 1 − α, we say that we have a 100(1 − α)% confidence interval. Note that α is
known as the level of significance, or the probability of committing a Type I error. This
topic is discussed in Section A.8.

EXAMPLE 24 Suppose that the distribution of height of men in a population is normally distributed with
mean = µ inches and σ = 2.5 inches. A sample of 100 men drawn randomly from this
population had an average height of 67 inches. Establish a 95 percent confidence interval
for the mean height ( = µ) in the population as a whole.

As noted, X̄ ∼ N(µ, σ 2/n), which in this case becomes X̄ ∼ N(µ, 2.52/100). From
Table D.1 one can see that

X̄ − 1.96
(

σ√
n

)
≤ µ ≤ X̄ + 1.96

σ√
n
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Methods of Estimation
Broadly speaking, there are three methods of parameter estimation: (1) least squares (LS),
(2) maximum likelihood (ML), and (3) method of moments (MOM) and its extension, the
generalized method of moments (GMM). We have devoted considerable time to illustrate
the LS method. In Chapter 4 we introduced the ML method in the regression context. But
the method is of much broader application.

The key idea behind the ML is the likelihood function. To illustrate this, suppose the
random variable X has PDF f(X,θ) which depends on a single parameter θ. We know the
PDF (e.g., Bernoulli or binomial) but do not know the parameter value. Suppose we obtain
a random sample of nX values. The joint PDF of these n values is:

g(x1, x2, . . . , xn; θ)

Because it is a random sample, we can write the preceding joint PDF as a product of the
individual PDF as

g(x1, x2, . . . , xn; θ) = f (x1; θ) f (x2; θ) · · · f (xn; θ)

The joint PDF has a dual interpretation. If θ is known, we interpret it as the joint probability
of observing the given sample values. On the other hand, we can treat it as a function of θ

for given values of x1, x2, . . . , xn . On the latter interpretation, we call the joint PDF the
likelihood function (LF) and write it as

L(θ; x1, x2, . . . , xn) = f (x1; θ) f (x2; θ) · · · f (xn; θ)

Observe the role reversal of θ in the joint probability density function and the likelihood
function.

The ML estimator of θ is that value of θ that maximizes the (sample) likelihood func-
tion, L. For mathematical convenience, we often take the log of the likelihood, called
the log-likelihood function (log L). Following the calculus rules of maximization, we
differentiate the log-likelihood function with respect to the unknown and equate the
resulting derivative to zero. The resulting value of the estimator is called the maximum-
likelihood estimator. One can apply the second-order condition of maximization to
assure that the value we have obtained is in fact the maximum value.

In case there is more than one unknown parameter, we differentiate the log-likelihood
function with respect to each unknown, set the resulting expressions to zero, and solve
them simultaneously to obtain the values of the unknown parameters. We have already
shown this for the multiple regression model (see Chapter 4, Appendix 4A.1).

covers 95 percent of the area under the normal curve. Therefore, the preceding interval
provides a 95 percent confidence interval for µ. Plugging in the given values of X̄ , σ , and
n, we obtain the 95 percent confidence interval as

66.51 ≤ µ ≤ 67.49

In repeated such measurements, intervals thus established will include the true µ with
95 percent confidence. A technical point may be noted here. Although we can say that the
probability that the random interval [ X̄ ± 1.96(σ/

√
n)] includes µ is 95 percent, we cannot

say that the probability is 95 percent that the particular interval (66.51, 67.49) includes µ.
Once this interval is fixed, the probability that it will include µ is either 0 or 1. What we can
say is that if we construct 100 such intervals, 95 out of the 100 intervals will include the
true µ; we cannot guarantee that one particular interval will necessarily include µ.

EXAMPLE 24
(Continued)
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The Method of Moments
We have given a glimpse of MOM in Exercise 3.4 in the so-called analogy principle in
which the sample moments try to duplicate the properties of their population counterparts.
The generalized method of moments (GMM), which is a generalization of MOM, is now
becoming more popular, but not at the introductory level. Hence we will not pursue it here.

The desirable statistical properties fall into two categories: small-sample, or finite-
sample, properties and large-sample, or asymptotic, properties. Underlying both of these
sets of properties is the notion that an estimator has a sampling, or probability, distribution.

Small-Sample Properties
Unbiasedness
An estimator θ̂ is said to be an unbiased estimator of θ if the expected value of θ̂ is equal to
the true θ; that is,

E(θ̂) = θ

or

E(θ̂) − θ = 0

If this equality does not hold, then the estimator is said to be biased, and the bias is
calculated as

bias(θ̂) = E(θ̂) − θ

Of course, if E(θ̂) = θ—that is, θ̂ is an unbiased estimator—the bias is zero.
Geometrically, the situation is as depicted in Figure A.8. In passing, note that unbiased-

ness is a property of repeated sampling, not of any given sample: Keeping the sample size
fixed, we draw several samples, each time obtaining an estimate of the unknown parameter.
The average value of these estimates is expected to be equal to the true value if the estima-
tor is unbiased.

Minimum Variance
θ̂1 is said to be a minimum-variance estimator of θ if the variance of θ̂1 is smaller than or at
most equal to the variance of θ̂2, which is any other estimator of θ. Geometrically, we have

EXAMPLE 25 Assume that the random variable X follows the Poisson distribution with the mean value
of λ. Suppose x1, x2, . . . , xn are independent Poisson random variables each with mean λ.
Suppose we want to find out the ML estimator of λ. The likelihood function here is:

L (x1, x2, . . . , xn; λ) = e−λλx1

x1!
e−λλx2

x2!
· · · e−λλxn

xn!

= e−nλλ	xi

x1!x2! · · · xn!

This is a rather unwieldy expression, but if we take its log, it becomes

log (x1, x2, . . . , xn; λ) = −nλ +
∑

xi log λ − log c

where log c = ∏
xi !. Differentiating the preceding expression with respect to λ, we obtain

(−n + (
∑

xi )/λ). By setting this last expression to zero, we obtain λml = (
∑

xi )/n = X̄ ,
which is the ML estimator of the unknown λ.
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Figure A.9, which shows three estimators of θ, namely θ̂1, θ̂2, and θ̂3, and their probability
distributions. As shown, the variance of θ̂3 is smaller than that of either θ̂1 or θ̂2. Hence,
assuming only the three possible estimators, in this case θ̂3 is a minimum-variance
estimator. But note that θ̂3 is a biased estimator (why?).

Best Unbiased, or Efficient, Estimator
If θ̂1 and θ̂2 are two unbiased estimators of θ, and the variance of θ̂1 is smaller than or
at most equal to the variance of θ̂2, then θ̂1 is a minimum-variance unbiased, or best
unbiased, or efficient, estimator. Thus, in Figure A.9, of the two unbiased estimators θ̂1

and θ̂2, θ̂1 is best unbiased, or efficient.

Linearity
An estimator θ̂ is said to be a linear estimator of θ if it is a linear function of the sample
observations. Thus, the sample mean defined as

X̄ = 1

n

∑
Xi = 1

n
(x1 + x2 + · · · + xn)

is a linear estimator because it is a linear function of the X values.

Best Linear Unbiased Estimator (BLUE)
If θ̂ is linear, is unbiased, and has minimum variance in the class of all linear unbiased
estimators of θ, then it is called a best linear unbiased estimator, or BLUE for short.

Minimum Mean-Square-Error (MSE) Estimator
The MSE of an estimator θ̂ is defined as

MSE(θ̂) = E(θ̂ − θ)2

E(  2) ≠

f (  1) f (  2)θ

E( 1) =  θ θ θ

θ

θ

FIGURE A.8
Biased and unbiased
estimators. 
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E(  3)θ
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θ 

θ

FIGURE A.9
Distribution of three
estimators of θ.
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828 Appendix A A Review of Some Statistical Concepts

This is in contrast with the variance of θ̂ , which is defined as

var (θ̂) = E[θ̂ − E(θ̂)]2

The difference between the two is that var (θ̂) measures the dispersion of the distribution of
θ̂ around its mean or expected value, whereas MSE(θ̂ ) measures dispersion around the true
value of the parameter. The relationship between the two is as follows:

MSE(θ̂) = E(θ̂ − θ)2

= E[θ̂ − E(θ̂) + E(θ̂) − θ]2

= E[θ̂ − E(θ̂)]2 + E[E(θ̂) − θ]2 + 2E[θ̂ − E(θ̂)][E(θ̂) − θ]

= E[θ̂ − E(θ̂)]2 + E[E(θ̂) − θ]2 since the last term is zero6

= var (θ̂) + bias(θ̂)2

= variance of θ̂ plus square bias

Of course, if the bias is zero, MSE(θ̂) = var (θ̂).
The minimum MSE criterion consists in choosing an estimator whose MSE is the least

in a competing set of estimators. But notice that even if such an estimator is found, there is
a tradeoff involved—to obtain minimum variance you may have to accept some bias. Geo-
metrically, the situation is as shown in Figure A.10. In this figure, θ̂2 is slightly biased, but
its variance is smaller than that of the unbiased estimator θ̂1. In practice, however, the min-
imum MSE criterion is used when the best unbiased criterion is incapable of producing
estimators with smaller variances.

Large-Sample Properties
It often happens that an estimator does not satisfy one or more of the desirable statistical
properties in small samples. But as the sample size increases indefinitely, the estimator
possesses several desirable statistical properties. These properties are known as the large-
sample, or asymptotic, properties.

6The last term can be written as 2{[E (θ̂)]2 − [E (θ̂)]2 − θ E (θ̂) + θ E (θ̂)} = 0. Also note that
E [E (θ̂) − θ]2 = [E (θ̂) − θ]2 , since the expected value of a constant is simply the constant itself.
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FIGURE A.10
Tradeoff between bias
and variance.
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Asymptotic Unbiasedness
An estimator θ̂ is said to be an asymptotically unbiased estimator of θ if

lim
n→∞ E(θ̂n) = θ

where θ̂n means that the estimator is based on a sample size of n and where lim means limit
and n → ∞ means that n increases indefinitely. In words, θ̂ is an asymptotically unbiased
estimator of θ if its expected, or mean, value approaches the true value as the sample size
gets larger and larger. As an example, consider the following measure of the sample
variance of a random variable X:

S2 =
∑

(Xi − X̄)2

n

It can be shown that

E(S2) = σ 2

(
1 − 1

n

)

where σ 2 is the true variance. It is obvious that in a small sample S2 is biased, but as n
increases indefinitely, E(S2) approaches true σ 2; hence it is asymptotically unbiased.

Consistency
θ̂ is said to be a consistent estimator if it approaches the true value θ as the sample size gets
larger and larger. Figure A.11 illustrates this property.

In this figure we have the distribution of θ̂ based on sample sizes of 25, 50, 80, and 100.
As the figure shows, θ̂ based on n = 25 is biased since its sampling distribution is not
centered on the true θ. But as n increases, the distribution of θ̂ not only tends to be more
closely centered on θ (i.e., θ̂ becomes less biased) but its variance also becomes smaller.
If in the limit (i.e., when n increases indefinitely) the distribution of θ̂ collapses to the single
point θ, that is, if the distribution of θ̂ has zero spread, or variance, we say that θ̂ is a
consistent estimator of θ.
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FIGURE A.11
The distribution of θ̂

as sample size
increases.
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More formally, an estimator θ̂ is said to be a consistent estimator of θ if the probability that
the absolute value of the difference between θ̂ and θ is less than δ (an arbitrarily small posi-
tive quantity) approaches unity. Symbolically,

lim
n→∞ P{|θ̂ − θ | < δ} = 1 δ > 0

where P stands for probability. This is often expressed as

plim
n→∞

θ̂ = θ

where plim means probability limit.
Note that the properties of unbiasedness and consistency are conceptually very differ-

ent. The property of unbiasedness can hold for any sample size, whereas consistency is
strictly a large-sample property.

A sufficient condition for consistency is that the bias and variance both tend to zero as
the sample size increases indefinitely.7 Alternatively, a sufficient condition for consistency
is that the MSE(θ̂) tends to zero as n increases indefinitely. (For MSE[θ̂], see the discussion
presented previously.)

EXAMPLE 26 Let X1, X2, . . . , Xn be a random sample from a distribution with mean µ and variance σ 2.
Show that the sample mean X̄ is a consistent estimator of µ.

From elementary statistics it is known that E ( X̄ ) = µ and var ( X̄ ) = σ 2/n. Since
E ( X̄ ) = µ regardless of the sample size, it is unbiased. Moreover, as n increases indefinitely,
var ( X̄ ) tends toward zero. Hence, X̄ is a consistent estimator of µ.

The following rules about probability limits are noteworthy.

1. Invariance (Slutsky property). If θ̂ is a consistent estimator of θ and if h(θ̂) is any con-
tinuous function of θ̂ , then

plim
n→∞

h(θ̂) = h(θ)

What this means is that if θ̂ is a consistent estimator of θ, then 1/θ̂ is also a consistent
estimator of 1/θ and that log (θ̂) is also a consistent estimator of log (θ). Note that this
property does not hold true of the expectation operator E; that is, if θ̂ is an unbiased
estimator of θ (that is, E[θ̂] = θ), it is not true that 1/θ̂ is an unbiased estimator of 1/θ ;
that is, E(1/θ̂) �= 1/E(θ̂) �= 1/θ .

2. If b is a constant, then

plim
n→∞

b = b

That is, the probability limit of a constant is the same constant.

3. If θ̂1 and θ̂2 are consistent estimators, then

plim (θ̂1 + θ̂2) = plim θ̂1 + plim θ̂2

plim (θ̂1θ̂2) = plim θ̂1 plim θ̂2

plim

(
θ̂1

θ̂2

)
= plim θ̂1

plim θ̂2

7More technically, limn→∞ E (θ̂n) = θ and limn→∞ var (θ̂n) = 0.
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The last two properties, in general, do not hold true of the expectation operator E. Thus,
E(θ̂1/θ̂2) �= E(θ̂1)/E(θ̂2). Similarly, E(θ̂1θ̂2) �= E(θ̂1)E(θ̂2). If, however, θ̂1 and θ̂2 are
independently distributed, E(θ̂1θ̂2) = E(θ̂1)E(θ̂2), as noted previously.

Asymptotic Efficiency
Let θ̂ be an estimator of θ. The variance of the asymptotic distribution of θ̂ is called the
asymptotic variance of θ̂ . If θ̂ is consistent and its asymptotic variance is smaller than
the asymptotic variance of all other consistent estimators of θ , θ̂ is called asymptotically
efficient.

Asymptotic Normality
An estimator θ̂ is said to be asymptotically normally distributed if its sampling distribution
tends to approach the normal distribution as the sample size n increases indefinitely. For
example, statistical theory shows that if X1, X2, . . . , Xn are independent normally distrib-
uted variables with the same mean µ and the same variance σ 2, the sample mean X̄ is also
normally distributed with mean µ and variance σ 2/n in small as well as large samples. But
if the Xi are independent with mean µ and variance σ 2 but are not necessarily from the
normal distribution, then the sample mean X̄ is asymptotically normally distributed with
mean µ and variance σ 2/n; that is, as the sample size n increases indefinitely, the sample
mean tends to be normally distributed with mean µ and variance σ 2/n. That is in fact the
central limit theorem discussed previously.

A.8 Statistical Inference: Hypothesis Testing

Estimation and hypothesis testing constitute the twin branches of classical statistical infer-
ence. Having examined the problem of estimation, we briefly look at the problem of testing
statistical hypotheses.

The problem of hypothesis testing may be stated as follows. Assume that we have an rv X
with a known PDF f(x; θ), where θ is the parameter of the distribution. Having obtained a
random sample of size n, we obtain the point estimator θ̂ . Since the true θ is rarely known,
we raise the question: Is the estimator θ̂ “compatible” with some hypothesized value of θ,
say, θ = θ∗, where θ∗ is a specific numerical value of θ? In other words, could our sample
have come from the PDF f (x; θ) = θ∗? In the language of hypothesis testing θ = θ∗ is
called the null (or maintained) hypothesis and is generally denoted by H0. The null
hypothesis is tested against an alternative hypothesis, denoted by H1, which, for example,
may state that θ �= θ∗. (Note: In some textbooks, H0 and H1 are designated by H1 and H2,
respectively.)

The null hypothesis and the alternative hypothesis can be simple or composite. A
hypothesis is called simple if it specifies the value(s) of the parameter(s) of the distribution;
otherwise it is called a composite hypothesis. Thus, if X ∼ N (µ, σ 2) and we state that

H0: µ = 15 and σ = 2

it is a simple hypothesis, whereas

H0: µ = 15 and σ > 2

is a composite hypothesis because here the value of σ is not specified.
To test the null hypothesis (i.e., to test its validity), we use the sample information to

obtain what is known as the test statistic. Very often this test statistic turns out to be
the point estimator of the unknown parameter. Then we try to find out the sampling, or
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