
DD.MM.YYYY

MICROPROCESSOR SYSTEMS
(IAS0430)
Department of Computer Systems
Tallinn University of Technology

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU
§ What is the CPU?

§ The Central Processing Unit is the brain of the computer.
§ It performs multiple logical and arithmetic operations on instructions and data.
§ It controls the behavior of the different system components.

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 2
§ What is the CPU made of?

The CPU is made out of several
components that work together.

The Arithmetic/Logic Unit (ALU):
Is the number processor component of the
CPU. It performs logical and arithmetic
operations on operands and addresses. It
is made out of different complex circuits such
as adders, subtractors, comparators, and
other logic gates that perform different
operations.

The ALU receives data from the memory
using the data bus (blue) and performs
operations received from the control unit.

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 2
§ What is the CPU made of?

The CPU is made out of several
components that work together.

The Control Unit (CU):
The control unit does what the name suggests,
it controls the different components of the
CPU. The control unit is responsible for
decoding the instruction into commands
that are passed to the different
components using the control bus (red).
The control unit itself is made of different
components. It is made out of decoders,
multiplexers, and some cases encoders.

The control unit is also responsible of passing
data to the ALU for performing operations on
them.

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 2
§ What is the CPU made of?

The CPU is made out of several
components that work together.

The Program Counter Register (PC):
The program counter keeps track of the
instruction address that is to be executed
next. It is used to specify which memory
location holds the instruction that the CPU
must execute next.
The program counter is incremented after
each instruction is finished executing
allowing the next instruction to be fetched
from memory.

The program counter can also be loaded
with a number allowing execution jumps

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 2
§ What is the CPU made of?

The CPU is made out of several
components that work together.

The Instruction Register (IR):
The instruction register holds the current
instruction to be executed. Once the PC is
set, the instruction register asks the memory
to load the instruction at the location specified
by the PC. It also signals the PC to
increment its value once the instruction is
executed

The memory in turn, loads the instruction to
the address bus (green) and the instruction
register holds to the data. It then sends this
instruction to the control unit when the
control unit asks for it.

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 2
§ What is the CPU made of?

The CPU is made out of several
components that work together.

The Accumulator (Accu):
The accumulator is a designated register to
hold the results from the ALU operation.
The Accumulator can also be a collection of
registers – known as the register file.

The Accumulator is connected to the ALU both
as input and output using the data bus.
This allows data stored in the
accumulator to be used by the ALU again
in the next instruction execution. It is also
connected to the memory allowing storing
the data inside it to the memory when
needed.

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 2
§ What is the CPU made of?

The CPU is made out of several
components that work together.

The memory (mem):
It does what the name suggests, it remembers
stuff. It is a storage location for data to be
processed by the CPU. It holds addresses
and immediate values. The size the memory
and its type are essential factors in the CPU’s
performance. For almost every operation that
the CPU completes, the memory is accessed,
whether it was for loading data from memory
or to store data to memory.

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 2
§ The Clock:

§ The CPU clock is what determines when the CPU does what.
§ The clock is a an oscillator that produces a symmetrical square wave digital

signal that indicates time (cycles) and is used to synchronizing the components
of the CPU.

§ The clock frequency is measured in Gigahertz (GHz).
§ A clock cycle is a single period of clock signal. The time the square signal takes

between reaching the rising edge of the clock (1) and then reach the falling
edge of the clock (0).

§ A 1GHz CPU, will produce 1 billion clock cycles per second.

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 3
§ How does the CPU work:

§ The CPU interprets instructions and executes them based on the design of its
internal components.

§ It is designed on predefined Instruction Set Architecture (ISA).
§ The ISA defines how the CPU internal components behave.
§ The ISA defines how instructions are formatted and what bits in the instruction mean

what!

TALLINN UNIVERSITY OF TECHNOLOGY

THE CPU - 3
§ What is a CPU instruction:

§ The instruction is a series of bits that describe what operations (op code) must be
executed on what operands (address/immediate) and the type of those
operands (id).

§ The instruction is made out of different parts, most notably:
§ The Op Code:

§ This parts defines what operation must be performed by the CPU
§ The operand:

§ This part contains the memory address or the immediate value that the operation
will be performed on.

§ The data identifier:
§ This part identifies the data type of the operand.

§ The registers:
§ This part specifies what registers the CPU will use to execute the operation.

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ For this course, we will use an 8-bit dummy CPU that we will use in the following classes.
§ 8-bit means that the instruction is 8-bits long. Eg: 00100101

§ Lets start with the op code:
§ In this example we will use 3 bits to specify the operation that the instruction must

execute. The red part is the op code 00100101
§ 3 bits allows us to have 23 = 8 combinations of bits: 000,001,010,011, …
§ This means that with using 3 bits to specify the op code, we can have 8

operations for the instruction.
§ The CPU needs to move stuff around, which means that we need instructions

telling the CPU where to put and get things. A load and store instructions are
useful here.

Op code operation Function
001 LD Load to accum
010 ST Store to memory

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we have operation to move things around, lets do some basic arithmetic operations

such as Add and Subtract.

§ Now that we have these operations, we need some flow control, these operations allows the
CPU to make decisions without the help of the control unit. Namely, the CPU needs to know if
two values are equal (EQ) and then use that to jump (JP) to new instruction.

Op code operation Function
001 LD Load to accum
010 ST Store to memory
011 ADD Add value to value in accum
100 SUB Subtract value from value in accum

Op code operation Function
101 EQ Checks in value is equal to value in accum
110 JP Set value in PC to value

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we have some good operations and functions, we need to halt execution (HE) the

CPU. Without a direct instruction telling the CPU to stop, it will go forever and ever and ever
without stopping (This only means that the PC counter will keep incrementing until it
overflows)

§ Now that we have the op code we need, lets see what other things we can do.

Op code operation Function
001 LD Load to accum
010 ST Store to memory
011 ADD Add value to value in accum
100 SUB Subtract value from value in accum
101 EQ Checks in value is equal to value in accum
110 JP Set value in PC to value
111 HE Halt Execution

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ The next thing we need to consider is telling the CPU what data to operate on. We need to

specify where the data is found in the instruction.
§ Since we used the first three bits for the ops code, we will use the last 4 bits for the

operand. The green part is the operand 00100101
§ How many values can we store in 4 bits?

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ The next thing we need to consider is telling the CPU what data to operate on. We need to

specify where the data is found in the instruction.
§ Since we used the first three bits for the ops code, we will use the last 4 bits for the

operand. The green part is the operand 00100101
§ How many values can we store in 4 bits?

§ We can store 24 = 16 combinations of bits. What is the largest value we can store in 4
bits?

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ The next thing we need to consider is telling the CPU what data to operate on. We need to

specify where the data is found in the instruction.
§ Since we used the first three bits for the ops code, we will use the last 4 bits for the

operand. The green part is the operand 00100101
§ How many values can we store in 4 bits?

§ We can store 24 = 16 combinations of bits.
§ What is the largest value we can store in 4 bits?

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ The next thing we need to consider is telling the CPU what data to operate on. We need to

specify where the data is found in the instruction.
§ Since we used the first three bits for the ops code, we will use the last 4 bits for the

operand. The green part is the operand 00100101
§ How many values can we store in 4 bits?

§ We can store 24 = 16 combinations of bits.
§ What is the largest value we can store in 4 bits?

§ 11112 which equals 1510 is the largest value.
§ The number of bits we decide to reserve for the operand also dictates the size of the

memory. Since the operand will be used to refer to memory locations (addresses), the
addresses need to be within the operands range.

§ In this example, there will be two types of operands, addresses and immediate values
(integers)

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we know where the operands can be found in the instruction, we also need to tell

the CPU the type of operand it is performing operation on. This has huge effect on CPU
accuracy.

§ We will use the last bit to specify operand type or also called id. Id is in yellow 00100101
§ The id type has two possible combinations (1 and 0).

§ Some operations, require an immediate value to be performed, such as LD, ADD, SUB,
EQ. But other operations such as ST and JP will require an address. So for this example,
we will be using the id bit to specify what type of data we will be operating on.
§ 0 will be reserved for address
§ 1 will be reserved for immediate values

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we specified what the instruction look like, we will end us with the following table.

§ # donates id 1, meaning that the # symbol is for immediate values
§ $ donates id 0, meaning that the $ symbol is for addresses

Op code operation Function Use binary
001 LD Load to accum LD # 5 00110101

010 ST Store to memory ST $ 2 01000010

011 ADD Add value to value in accum ADD # 10 01111010

100 SUB Subtract value from value in accum SUB # 4 10010100

101 EQ Checks in value is equal to value in accum, if true, skip
next instruction

EQ # 5 10110101

110 JP Set value in PC to value JP $ 8 11001000

111 HE Halt Execution HE 11100000

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we have the instruction set, lets see how the CPU would interoperate that. Lets

start with the following instruction : LD # 2

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we have the instruction set,

lets see how the CPU would
interoperate that. Lets start with the
following instruction : LD # 2

§ Step 1 : the PC requests the
instruction from the memory.

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we have the instruction set,

lets see how the CPU would
interoperate that. Lets start with the
following instruction : LD # 2

§ Step 1 : the PC requests the
instruction from the memory.

§ Step 2 : the memory responds by
sending the instruction to the IR
where it is held before it is executed.

§ Those two steps are called
Instruction Fetch cycle (IF).

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we have the instruction set,

lets see how the CPU would
interoperate that. Lets start with the
following instruction : LD # 2

§ Step 3 : several things happen:
§ 3/1: The control unit receives the

instruction from the IR.
§ 3/2-3: The control unit decoder,

sends commands to the ALU
preparing for execution and the
multiplexer.

§ 3/4: Since the information
needed is in the IR, the control
unit signals the IR to send it to
the ALU for addition.

§ This step is called Instruction
Decode (ID).

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we have the instruction set,

lets see how the CPU would
interoperate that. Lets start with the
following instruction : LD # 2

§ Step 4 : The ALU executes the
operation according to the command
received from the control unit. In this
case it is a value load to the
accumulator.

§ This step is called Instruction
Execution (EXE).

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Now that we have the instruction set,

lets see how the CPU would
interoperate that. Lets start with the
following instruction : LD # 2

§ Step 5 : The IR signals the PC to
increment the value in order to fetch
the next instruction.

TALLINN UNIVERSITY OF TECHNOLOGY

THE DUMMY CPU - EXAMPLE
§ Class exercise:

§ Execute the following program
using the 8-bit instruction set of
the dummy CPU:

0 LD # 0

1 ADD #1

2 EQ #3

3 JP $1

4 ST $6

5 HE

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ We load the program into the memory.

0 LD # 0

1 ADD #1

2 EQ #3

3 JP $1

4 ST $6

5 HE

PC IR Accum Mem location Memory
0000 LD # 0
0001 ADD # 1
0010 EQ # 3
0011 JP $ 1
0100 ST $ 6
0101 HE
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ We load the program into the memory.

§ We start by setting the PC to the first
memory location and loading that
memory location into the IR.

§ Since the instruction is a load
instruction, the value 0000 in the
instruction will be put into the Accum.

0 LD # 0

1 ADD #1

2 EQ #3

3 JP $1

4 ST $6

5 HE

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0

0001 ADD # 1
0010 EQ # 3
0011 JP $ 1
0100 ST $ 6
0101 HE
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The PC is then incremented the value

in the PC points to location 0001. We
fetch that instruction into the IR.

§ Since the instruction is addition, the
value in the accum is added to the
value in the instruction. 0 + 1 = 1

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1

0010 EQ # 3
0011 JP $ 1
0100 ST $ 6
0101 HE
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The PC is then incremented the value

in the PC points to location 0001. We
fetch that instruction into the IR.

§ Since the instruction is addition, the
value in the accum is added to the
value in the instruction. 0 + 1 = 1

§ The PC is incremented.
§ Since this is an equality check, we

compare the accum to the value in the
instruction. Value in accum (0001)
does not equal 3 (0011). Thus, we
continue to the next instruction. Value
in accum does not change

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3

0011 JP $ 1
0100 ST $ 6
0101 HE
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The PC is then incremented the value

in the PC points to location 0001. We
fetch that instruction into the IR.

§ Since the instruction is addition, the
value in the accum is added to the
value in the instruction. 0 + 1 = 1

§ The PC is incremented.
§ Since this is an equality check, we

compare the accum to the value in the
instruction. Value in accum (0001)
does not equal 3 (0011). Thus, we
continue to the next instruction. Value
in accum does not change

§ The PC is incremented.
§ jump instruction resets the PC to the

value in the instruction which is 0001.
value in accum does not change

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1

0100 ST $ 6
0101 HE
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The PC is set to the value in the jump

instruction. And the instruction is
loaded again.

§ This is another addition, but now it is
1 + 1 = 2

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1
0001 ADD # 1 0010 0100 ST $ 6

0101 HE
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The PC is set to the value in the jump

instruction. And the instruction is
loaded again.

§ This is another addition, but now it is
1 + 1 = 2

§ Check equality again. Since it is not
equal we go to the next instruction

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1
0001 ADD # 1 0010 0100 ST $ 6
0010 EQ # 3 0010 0101 HE

0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The PC is set to the value in the jump

instruction. And the instruction is
loaded again.

§ This is another addition, but now it is
1 + 1 = 2

§ Check equality again. Since it is not
equal we go to the next instruction

§ We have another jump instruction, we
reset the PC counter to match the
value in the jump instruction.

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1
0001 ADD # 1 0010 0100 ST $ 6
0010 EQ # 3 0010 0101 HE
0011 JP $ 1 0010 0110

0111
1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The PC is set to the value in the jump

instruction. And the instruction is
loaded again.

§ This is another addition, but now it is
1 + 1 = 2. We update accum

§ Check equality again. Since it is not
equal we go to the next instruction

§ We have another jump instruction, we
reset the PC counter to match the
value in the jump instruction.

§ Another addition, 1 + 2 = 3 and
update accum

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1
0001 ADD # 1 0010 0100 ST $ 6
0010 EQ # 3 0010 0101 HE
0011 JP $ 1 0010 0110
0001 ADD # 1 0011 0111

1000
1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The PC is set to the value in the jump

instruction. And the instruction is
loaded again.

§ This is another addition, but now it is
1 + 1 = 2. We update accum

§ Check equality again. Since it is not
equal we go to the next instruction

§ We have another jump instruction, we
reset the PC counter to match the
value in the jump instruction.

§ Another addition, 1 + 2 = 3 and
update accum

§ Now, the equality is true. The value in
accum is equal to value in equality
instruction. We update the PC counter
to skip the next instruction.

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1
0001 ADD # 1 0010 0100 ST $ 6
0010 EQ # 3 0010 0101 HE
0011 JP $ 1 0010 0110
0001 ADD # 1 0011 0111
0010 EQ # 3 0011 1000

1001
1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The next instruction is a store

instruction. We store the value in the
accum into memory location in the
instruction. In this case, We store
value 0011 into location 0110.

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1
0001 ADD # 1 0010 0100 ST $ 6
0010 EQ # 3 0010 0101 HE
0011 JP $ 1 0010 0110 0011
0001 ADD # 1 0011 0111
0010 EQ # 3 0011 1000
0100 ST $ 6 0011 1001

1010
1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The next instruction is a store

instruction. We store the value in the
accum into memory location in the
instruction. In this case, We store
value 0011 into location 0110.

§ The PC is incremented.
§ The instruction is halt execution. The

program has finished.

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1
0001 ADD # 1 0010 0100 ST $ 6
0010 EQ # 3 0010 0101 HE
0011 JP $ 1 0010 0110 0011
0001 ADD # 1 0011 0111
0010 EQ # 3 0011 1000
0100 ST $ 6 0011 1001
0101 HE 0011 1010

1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXERCISE
§ The next instruction is a store

instruction. We store the value in the
accum into memory location in the
instruction. In this case, We store
value 0011 into location 0110.

§ The PC is incremented.
§ The instruction is halt execution. The

program has finished.
§ What does this program do?
§ What is it similar to?

PC IR Accum Mem location Memory
0000 LD # 0 0000 0000 LD # 0
0001 ADD # 1 0001 0001 ADD # 1
0010 EQ # 3 0001 0010 EQ # 3
0011 JP $ 1 0001 0011 JP $ 1
0001 ADD # 1 0010 0100 ST $ 6
0010 EQ # 3 0010 0101 HE
0011 JP $ 1 0010 0110 0011
0001 ADD # 1 0011 0111
0010 EQ # 3 0011 1000
0100 ST $ 6 0011 1001
0101 HE 0011 1010

1011
1100
1101
1110
1111

TALLINN UNIVERSITY OF TECHNOLOGY

EXAMPLES: INTEL 8080 / 8085

source: Wikipedia.org

i8080 i8085 i8086/88

TALLINN UNIVERSITY OF TECHNOLOGY

HOME TASK

§ Home Task for the coming two weeks: (find details in Moodle HOME TASK 1)

§ Check Moodle for the task description and file needed to complete the task

§ Lab assignment 1 can also be found on Moodle.

