
DD.MM.YYYY

MICROPROCESSOR SYSTEMS
(IAS0430)

Department of Computer Systems
Tallinn University of Technology



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ The primary function of an operating system is to provide an environment where user 

programs can run. 

▪ The operating system must provide a framework for:

▪ Program execution

▪ A set of services: (file management etc.)

▪ An interface to these services (API)

▪ On a multiprogramming system, the operating system must also provide mechanisms to 
make sure that the programs loaded into memory and/or are executing at the same time, do 
not interfere with each other.

▪ This restricted form of program execution, which has access to the services of the 
operating system, is known as a process.

▪ a process is a sequence of computer instructions executing within a restricted 
environment.

▪ What makes a process?

▪ Think of what we learned in the CPU, kernel and user modes, and OS classes!



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ A process is a sequence of computer instructions executing within a restricted environment.

▪ We also know it as a Job! Or a program!

▪ But what if we want to break a job into multiple processes to finish its execution faster!

▪ If we have 4 CPUs and only one job, if we divide the job into 4 processes and run 
those 4 processes at the same time using the 4 CPUs, we will surely finish its 
execution faster… right? ---- obviously

▪ In reality, all modern computers divide Jobs into multiple processes.

▪ More so, processes are further divided into threads – not for this course

▪ In order for a Process to execute, it needs an environment for execution!

▪ Such environment is called Process Context

▪ The process context consists of three parts:

▪ The Address Space

▪ Reserved Registers

▪ System Calls



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ The Address Space:

▪ Is a reserved set of memory locations where we store:

1. The machine-code instructions required by process 

2. A data area for the process' global variables

3. A stack area for the stack frames which contain the process' local variables. 

▪ The address space is protected, so that other processes cannot interfere with the 
execution progress of the process. Preventing other processes from:

1. Changing any or all instructions needed to execute the process

2. Accessing local variables of the process, as those are private information

3. Changing/updating the global variables of the process 

▪ Only the process and the OS can access its address space.

▪ Other processes can access an address space if, and only if, they run in kernel mode, 
allowed by the OS, and have certain privileges to do so.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ The Address Space:

▪ The address space is divided into areas:

▪ The instruction space where process instructions are stored

▪ Includes a binary image of the process.

▪ The binary image is the process’ executable code –
instructions

▪ The data space where static variables are stored

▪ The heap space where the dynamic memory allocation 
occurs.

▪ The heap can grow as long as the process needs and as 
long as the process address space is not exceeded.

▪ The stack space where private local variables are stored

▪ The stack can grow as long as the process needs and as 
long as the process address space is not exceeded.

▪ The header: OS reserved kernel space. Only OS can access.

▪ The footer: Includes information on the size of the address 
space, ID of the process and other information



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Reserved Registers:

▪ Is a set of CPU registers are exclusively used by this process in order to finish 
operations (addition, subtraction, comparison, etc.) quickly instead of needing access to 
slower memory (cache or RAM). 

▪ These registers are also used for invoking syscalls.

▪ By loading a register with a specific value, the CPU know what operation to perform 
for that process in kernel mode.

▪ System Calls

▪ As we know, a system call is a special instruction called the trap instruction.

▪ A process needs access to syscalls in order to access the different OS services.

▪ Once a process needs a service, it uses one of the reserved registers to store a 
specific value, and uses the trap instruction to tell the CPU which register that value 
is stored in.

▪ Once these three parts are available, a process context exists.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process states and process models:

▪ Since a process is an executable set of instructions, there need a way to determine if a 
process is ready for execution, if a process is waiting for data to arrive from I/O, if 
a process is being executed, and if a process is finished.

▪ For this, there are many models that indicate which state a process is in:

▪ The embedded system model

▪ Embedded system only have one process running at a time.

▪ This means that a process is either being executed or waiting for I/O

▪ As a result, a state diagram of an embedded system process stated would look 
something like this:

▪ The polling state is when

the process needs input

from the user to continue.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ The batch system model

▪ Most systems can process multiple processes at the same time. 

▪ This can be done by creating a batch of processes and managing them one at a time.

▪ Processes that have all the data they need to run, can be queued in a ready list in 
order to run them as soon as the CPU can.

▪ While running, if a process required I/O from the user or needs additional 
recourses to free up, it can be put into a state where it waits until it gets the data it 
requires to resume running

▪ Once a process has received the data it needs, it can be put into the ready queue again 
to be ran once the CPU can.

▪ If a running process is taking too long to run, the process manager will create a what is 
called a pre-empt, the process is put back to the ready state, allowing fair use of the 
CPU time among all the processes.

▪ Once a process is done, it is moved into a finished state, allowing the MMU to deallocate 
its Address Space.

▪ If a process is either waiting for I/O or resources or is ready to execute for too long, it is 
also terminated and put into a finish state.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ The batch system model



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process Control Blocks:

▪ Now that we know what states a process can have, we need to keep track of that 
somehow!

▪ This is done using the Process Control Block (PCB).

▪ The Process Control Block is a collection of information regarding a process. The 
OS uses it to keep track of several parts of the process:

▪ Contains the process' memory space – prevent deallocation of that space and 
protects it from other processes

▪ Save copies of the CPU registers in the PCB.

▪ Save information about any other resources used.

▪ Mark the process' new state.

▪ If in Waiting state, record which I/O operation the process is waiting for, 
so when I/O completes, the process can be moved back to Ready state.

▪ The PCB has many elements stored in it, those elements can be put in the following 
categories:



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process Control Blocks:

▪ Machine independent:

▪ Process ID.

▪ Process state.

▪ The process' priority.

▪ … etc.

▪ Machine dependent:

▪ Information on Address space.

▪ Copies of registers

▪ …etc.

▪ Statistics:

▪ Total time of execution.

▪ Estimated time of finish.

▪ Total of time the process was in each state.

▪ …etc.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process scheduling:

▪ Now that we know what are the possible states of the batch system, there must be a way 
for the system to decide which process should be selected to run or which process to be 
pre-empted!

▪ This is the function of the process (or processor) scheduler

▪ The process scheduler is an OS service that manages the CPU time by deciding what 
processes are selected to run and when they are pre-empted.

▪ Scheduling decisions

▪ Long-term scheduler decides which jobs/processes are to be admitted to the ready queue 
(in main memory); and dictates what processes are to run on a system, and the degree 
of concurrency to be supported at any one time.

▪ Medium-term scheduler temporarily removes processes from main memory and places 
them in secondary memory (such as a hard disk drive) or vice versa (swapping).

▪ Short-term scheduler (CPU scheduler) decides which of the ready, in-memory processes 
is to be executed (allocated a CPU) after a clock interrupt, an I/O interrupt, an operating 
system call or another form of signal.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ In general, there are two types of scheduling schemes

▪ Non-pre-emptive scheduling – a job/process is running from the beginning to the end 
without interrupts (unless interrupts are in the code).

▪ First Come, First Served (aka FIFO) scheduling

▪ Shortest Job Next (SJN) scheduling

▪ Priority scheduling

▪ Pre-emptive scheduling – a running job/process may be interrupted and put into wait 
state depending on different events/priorities

▪ Shortest Remaining Time (SRT) scheduling

▪ Fixed priority pre-emptive scheduling

▪ Round-robin scheduling

▪ Multilevel queue scheduling

▪ Work-conserving scheduling

▪ See also https://en.wikipedia.org/wiki/Scheduling_(computing) 



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS

▪ Process scheduling:

▪ Non-pre-emptive schemes: Where a process is never moved back to the ready from 
the running state – a process in running state is never stopped unless an I/O or a 
resource is needed: it will keep running until it is finished.

▪ This can causes resource hogging.

▪ This problem occurs when a job takes a very long time to finish and forces the 
MMU to allocate a large number of resources for it.

▪ This prevents other processes from starting or arriving to a ready state.

▪ These schemes can cause significant performance degradation if not used 
properly



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process scheduling:

▪ Non-pre-emptive schemes include:

▪ The First Come, First Served (FCFS); similar to FIFO:

▪ In this scheme, which ever processes arrives to a ready state first, is run first.

▪ This scheme does not take

time that process needs into

account, allowing slow jobs to

be executed at any time causing

performance degradation

▪ This scheme also does not 

take priority into account. 

More important processes might wait for too

long before being allowed to run.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process scheduling:

▪ Non-pre-emptive schemes include:

▪ Shortest Job Next (SJN):

▪ In this scheme, once a process comes to a ready state, the process scheduler 
makes a run-time estimate for it.

▪ Jobs with the shortest run-time

is added in head of the queue.

▪ Shorter processes are ran first,

allowing less wait time for 

shorter processes. A long process

usually needs to be in waiting state 

multiple times before finishing.

▪ This can still cause processes with high

Priority to be in ready state for too long.

▪ This can still cause resource hogging.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process scheduling:

▪ Non-pre-emptive schemes include:

▪ Priority scheduling:

▪ In this scheme, processes are assigned to a priority queue. It works similar to 
SJN, but higher priority processes are ran first.

▪ This priority can be decided 

using different information stored in 

the PCB.

▪ This can include:

▪ Process’ mode: kernel / user

▪ Process’ user: OS / sys admin /

priority user / user

▪ Process run-time estimation: 

remaining time / needed time (SJN)

▪ Resource hogging is still an issue



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process scheduling:

▪ What if during running of a process, we decide that another process should run?

▪ Using the non-pre-emptive schemes, we need to wait for a process to finish.

▪ But sometimes, we need to stop a running process to run a different process

▪ For that we use a pre-emptive scheme.

▪ Pre-emptive schemes: Where a process can be moved back to the ready state from 
the running state – a process in running state can be stopped when needed. 
Once an I/O or a resource is needed: it is moved to the Waiting state.

▪ This helps avoiding resource hogging by monitoring each process and stopping 
it if it tries to take too many resources.

▪ Those schemes are very complex to implement

▪ They require additional HW and SW for managing the PCBs of the 
currently running and waiting processes.

▪ These schemes can sometimes cause an overhead when used – additional delays 
happen because of the complexity.

▪ In addition to the complexity, those schemes themselves can be a process. This 
means that the CPU will have to do extra work for those schemes to be effective.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process scheduling:

▪ Pre-emptive schemes include:

▪ Shortest Remaining Time (SRT):

▪ It is the pre-emptive version of SJN. In this scheme, the process scheduler keeps 
track of the estimated run-time of processes in the Ready state and the 
estimated remaining run-time of a process in the Run state.

▪ Consider the following scenario:

▪ Process A is in Ready state it has 0.0033 seconds of estimated run-time.

▪ Process B is in Run state it has 0.0024 seconds of remaining run-time.

▪ Process C is in New State and it has 0.0012 seconds of estimated run-time.

▪ What happens when Process C comes to ready state?



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process scheduling:

▪ Pre-emptive schemes include:

▪ Shortest Remaining Time (SRT):

▪ It is the pre-emptive version of SJN. 

▪ Consider the following scenario:

▪ Process A is in Ready state it has 0.0033 seconds of estimated run-time.

▪ Process B is in Run state it has 0.0024 seconds of remaining run-time.

▪ Process C is in New State and it has 0.0012 seconds of estimated run-time.

▪ What happens when Process C comes to ready state?

▪ Since SRT favours processes with the shortest run time, Process C is moved 
to the head of the Ready queue.

▪ Now, a process in the Ready state has estimated run-time shorter than the 
remaining run-time of the current process in the run state.

▪ The process scheduler stops Process B and puts Process C in running state.

▪ Since process B has less time that Process A, it is moved to the head of the 
Ready queue.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Process scheduling:

▪ Pre-emptive schemes include:

▪ Round Robin:

▪ In this scheme, processes are given a slice of CPU timing. This slice is called a 
Process Time Quantum.

▪ Instead of forcing a Process to move from Running state to a Ready state, Round 
Robin decides a time quantum equal for each process. 

▪ Once this time quantum expires, the process is then moved to the tail of the 
Ready queue, allowing the process in the head of the queue to run.

▪ Time Quantum allocations are extremely important for performance. 

▪ If a Process requires less time quantum than it has, its time quantum will finish 
once it finishes.

▪ This requires an additional data structure to keep track of all this information. 

▪ This data structure is called a Request Queue. 

▪ A process is entered to the queue at the beginning of the access cycle.

▪ Let us see an example of how this works:



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

ms



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process A arrives to the Ready Queue and entered to the 
Request Queue. 



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process A arrives to the Ready Queue and entered to the 
Request Queue. 

▪ Since there is no other Process in the request queue, it is set to 
Running state and receives a time quantum of 3 ms.

▪ While A was running, at 1 ms, Process B also arrived to 
the Ready state and put into the request queue 



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process A only needed 3 ms to finish, once it is done, it is 
removed from the queue.

▪ Process B is sent to the running state, and given 3 ms
quantum.

▪ At 4 ms, Process C arrived to the Ready queue and put 
in the request queue



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process B used its quantum and ran for 3 ms seconds.

▪ It is then removed from the head of the queue and 
added to the tail of the queue with its remaining RT

▪ Next in the queue is process C. it is given a 3 ms quantum, 
but it only needs 2 ms.

▪ At 7 ms Process D arrives to Ready state. It is put into 
the request Queue.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process B used its quantum and ran for 3 ms seconds again, 
but it did not finish yet.

▪ It is then removed from the head of the queue and 
added to the tail of the queue with its remaining RT

▪ Next in the queue is process D. it is given a 3 ms quantum.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process B used its quantum and ran for 3 ms seconds again, 
but it did not finish yet.

▪ It is then removed from the head of the queue and 
added to the tail of the queue with its remaining RT

▪ Next in the queue is process D. it is given a 3 ms quantum.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process D used its quantum and ran for 3 ms seconds again, 
but it did not finish yet.

▪ It is then removed from the head of the queue and 
added to the tail of the queue with its remaining RT

▪ Next in the queue is process B. it is given a 3 ms quantum, 
but it only needs 1 ms, so it runs until if finishes, then process 
D is ran for 2 ms until it finishes



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Round Robin: In this example, the time quantum is 3 ms.

All process in the request queue are done.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Context Switching:

▪ Now we know what a process is, what are the process states and how it is changed 
from Ready state to Running.

▪ But we still do not know how it is changed from Running state to Waiting/Ready 
state.

▪ Context switching is the mechanism that a process is changed from the Running 
State to the Ready or Waiting state.

▪ Context switching happens when a Running state is interrupted because of an event.

▪ An event is called an interrupt.

▪ There are many types of interrupt:

▪ Software interrupts: caused by software (program instructions)

▪ Syscalls / Device Drivers / Sub-routines

▪ Hardware interrupts

▪ I/O inputs / Device Controllers / Pre-emptive process schedulers



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ Context Switching:

▪ Once an interrupt occurs, the CPU diverges its attention to handle an interrupt - if it is a 
software interrupt - or service the interrupt Request - if it was hardware interrupt.

▪ Almost all types of interrupts are handled by the OS services.

▪ Some execution signals coming from the peripherals of the CPU are handled by the 
CPU itself.

▪ An interrupt can send a process into a Waiting state if it requires the process to wait for 
I/O or resources.

▪ An interrupt can send a process into a Ready state if it is issued by the process scheduler


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

