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▪ The primary function of an operating system is to provide an environment where user 

programs can run. 

▪ The operating system must provide a framework for:

▪ Program execution

▪ A set of services: (file management etc.)

▪ An interface to these services (API)

▪ On a multiprogramming system, the operating system must also provide mechanisms to 
make sure that the programs loaded into memory and/or are executing at the same time, do 
not interfere with each other.

▪ This restricted form of program execution, which has access to the services of the 
operating system, is known as a process.

▪ a process is a sequence of computer instructions executing within a restricted 
environment.

▪ What makes a process?

▪ Think of what we learned in the CPU, kernel and user modes, and OS classes!



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ A process is a sequence of computer instructions executing within a restricted environment.

▪ We also know it as a Job! Or a program!

▪ But what if we want to break a job into multiple processes to finish its execution faster!

▪ If we have 4 CPUs and only one job, if we divide the job into 4 processes and run 
those 4 processes at the same time using the 4 CPUs, we will surely finish its 
execution faster… right? ---- obviously

▪ In reality, all modern computers divide Jobs into multiple processes.

▪ More so, processes are further divided into threads – not for this course

▪ In order for a Process to execute, it needs an environment for execution!

▪ Such environment is called Process Context

▪ The process context consists of three parts:

▪ The Address Space

▪ Reserved Registers

▪ System Calls
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▪ The Address Space:

▪ Is a reserved set of memory locations where we store:

1. The machine-code instructions required by process 

2. A data area for the process' global variables

3. A stack area for the stack frames which contain the process' local variables. 

▪ The address space is protected, so that other processes cannot interfere with the 
execution progress of the process. Preventing other processes from:

1. Changing any or all instructions needed to execute the process

2. Accessing local variables of the process, as those are private information

3. Changing/updating the global variables of the process 

▪ Only the process and the OS can access its address space.

▪ Other processes can access an address space if, and only if, they run in kernel mode, 
allowed by the OS, and have certain privileges to do so.
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▪ The Address Space:

▪ The address space is divided into areas:

▪ The instruction space where process instructions are stored

▪ Includes a binary image of the process.

▪ The binary image is the process’ executable code –
instructions

▪ The data space where static variables are stored

▪ The heap space where the dynamic memory allocation 
occurs.

▪ The heap can grow as long as the process needs and as 
long as the process address space is not exceeded.

▪ The stack space where private local variables are stored

▪ The stack can grow as long as the process needs and as 
long as the process address space is not exceeded.

▪ The header: OS reserved kernel space. Only OS can access.

▪ The footer: Includes information on the size of the address 
space, ID of the process and other information
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▪ Reserved Registers:

▪ Is a set of CPU registers are exclusively used by this process in order to finish 
operations (addition, subtraction, comparison, etc.) quickly instead of needing access to 
slower memory (cache or RAM). 

▪ These registers are also used for invoking syscalls.

▪ By loading a register with a specific value, the CPU know what operation to perform 
for that process in kernel mode.

▪ System Calls

▪ As we know, a system call is a special instruction called the trap instruction.

▪ A process needs access to syscalls in order to access the different OS services.

▪ Once a process needs a service, it uses one of the reserved registers to store a 
specific value, and uses the trap instruction to tell the CPU which register that value 
is stored in.

▪ Once these three parts are available, a process context exists.
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▪ Process states and process models:

▪ Since a process is an executable set of instructions, there need a way to determine if a 
process is ready for execution, if a process is waiting for data to arrive from I/O, if 
a process is being executed, and if a process is finished.

▪ For this, there are many models that indicate which state a process is in:

▪ The embedded system model

▪ Embedded system only have one process running at a time.

▪ This means that a process is either being executed or waiting for I/O

▪ As a result, a state diagram of an embedded system process stated would look 
something like this:

▪ The polling state is when

the process needs input

from the user to continue.



TALLINN UNIVERSITY OF TECHNOLOGY

THE PROCESS
▪ The batch system model

▪ Most systems can process multiple processes at the same time. 

▪ This can be done by creating a batch of processes and managing them one at a time.

▪ Processes that have all the data they need to run, can be queued in a ready list in 
order to run them as soon as the CPU can.

▪ While running, if a process required I/O from the user or needs additional 
recourses to free up, it can be put into a state where it waits until it gets the data it 
requires to resume running

▪ Once a process has received the data it needs, it can be put into the ready queue again 
to be ran once the CPU can.

▪ If a running process is taking too long to run, the process manager will create a what is 
called a pre-empt, the process is put back to the ready state, allowing fair use of the 
CPU time among all the processes.

▪ Once a process is done, it is moved into a finished state, allowing the MMU to deallocate 
its Address Space.

▪ If a process is either waiting for I/O or resources or is ready to execute for too long, it is 
also terminated and put into a finish state.
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▪ The batch system model
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▪ Process Control Blocks:

▪ Now that we know what states a process can have, we need to keep track of that 
somehow!

▪ This is done using the Process Control Block (PCB).

▪ The Process Control Block is a collection of information regarding a process. The 
OS uses it to keep track of several parts of the process:

▪ Contains the process' memory space – prevent deallocation of that space and 
protects it from other processes

▪ Save copies of the CPU registers in the PCB.

▪ Save information about any other resources used.

▪ Mark the process' new state.

▪ If in Waiting state, record which I/O operation the process is waiting for, 
so when I/O completes, the process can be moved back to Ready state.

▪ The PCB has many elements stored in it, those elements can be put in the following 
categories:
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▪ Process Control Blocks:

▪ Machine independent:

▪ Process ID.

▪ Process state.

▪ The process' priority.

▪ … etc.

▪ Machine dependent:

▪ Information on Address space.

▪ Copies of registers

▪ …etc.

▪ Statistics:

▪ Total time of execution.

▪ Estimated time of finish.

▪ Total of time the process was in each state.

▪ …etc.
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▪ Process scheduling:

▪ Now that we know what are the possible states of the batch system, there must be a way 
for the system to decide which process should be selected to run or which process to be 
pre-empted!

▪ This is the function of the process (or processor) scheduler

▪ The process scheduler is an OS service that manages the CPU time by deciding what 
processes are selected to run and when they are pre-empted.

▪ Scheduling decisions

▪ Long-term scheduler decides which jobs/processes are to be admitted to the ready queue 
(in main memory); and dictates what processes are to run on a system, and the degree 
of concurrency to be supported at any one time.

▪ Medium-term scheduler temporarily removes processes from main memory and places 
them in secondary memory (such as a hard disk drive) or vice versa (swapping).

▪ Short-term scheduler (CPU scheduler) decides which of the ready, in-memory processes 
is to be executed (allocated a CPU) after a clock interrupt, an I/O interrupt, an operating 
system call or another form of signal.
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▪ In general, there are two types of scheduling schemes

▪ Non-pre-emptive scheduling – a job/process is running from the beginning to the end 
without interrupts (unless interrupts are in the code).

▪ First Come, First Served (aka FIFO) scheduling

▪ Shortest Job Next (SJN) scheduling

▪ Priority scheduling

▪ Pre-emptive scheduling – a running job/process may be interrupted and put into wait 
state depending on different events/priorities

▪ Shortest Remaining Time (SRT) scheduling

▪ Fixed priority pre-emptive scheduling

▪ Round-robin scheduling

▪ Multilevel queue scheduling

▪ Work-conserving scheduling

▪ See also https://en.wikipedia.org/wiki/Scheduling_(computing) 
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▪ Process scheduling:

▪ Non-pre-emptive schemes: Where a process is never moved back to the ready from 
the running state – a process in running state is never stopped unless an I/O or a 
resource is needed: it will keep running until it is finished.

▪ This can causes resource hogging.

▪ This problem occurs when a job takes a very long time to finish and forces the 
MMU to allocate a large number of resources for it.

▪ This prevents other processes from starting or arriving to a ready state.

▪ These schemes can cause significant performance degradation if not used 
properly
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▪ Process scheduling:

▪ Non-pre-emptive schemes include:

▪ The First Come, First Served (FCFS); similar to FIFO:

▪ In this scheme, which ever processes arrives to a ready state first, is run first.

▪ This scheme does not take

time that process needs into

account, allowing slow jobs to

be executed at any time causing

performance degradation

▪ This scheme also does not 

take priority into account. 

More important processes might wait for too

long before being allowed to run.
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▪ Process scheduling:

▪ Non-pre-emptive schemes include:

▪ Shortest Job Next (SJN):

▪ In this scheme, once a process comes to a ready state, the process scheduler 
makes a run-time estimate for it.

▪ Jobs with the shortest run-time

is added in head of the queue.

▪ Shorter processes are ran first,

allowing less wait time for 

shorter processes. A long process

usually needs to be in waiting state 

multiple times before finishing.

▪ This can still cause processes with high

Priority to be in ready state for too long.

▪ This can still cause resource hogging.
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▪ Process scheduling:

▪ Non-pre-emptive schemes include:

▪ Priority scheduling:

▪ In this scheme, processes are assigned to a priority queue. It works similar to 
SJN, but higher priority processes are ran first.

▪ This priority can be decided 

using different information stored in 

the PCB.

▪ This can include:

▪ Process’ mode: kernel / user

▪ Process’ user: OS / sys admin /

priority user / user

▪ Process run-time estimation: 

remaining time / needed time (SJN)

▪ Resource hogging is still an issue
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▪ Process scheduling:

▪ What if during running of a process, we decide that another process should run?

▪ Using the non-pre-emptive schemes, we need to wait for a process to finish.

▪ But sometimes, we need to stop a running process to run a different process

▪ For that we use a pre-emptive scheme.

▪ Pre-emptive schemes: Where a process can be moved back to the ready state from 
the running state – a process in running state can be stopped when needed. 
Once an I/O or a resource is needed: it is moved to the Waiting state.

▪ This helps avoiding resource hogging by monitoring each process and stopping 
it if it tries to take too many resources.

▪ Those schemes are very complex to implement

▪ They require additional HW and SW for managing the PCBs of the 
currently running and waiting processes.

▪ These schemes can sometimes cause an overhead when used – additional delays 
happen because of the complexity.

▪ In addition to the complexity, those schemes themselves can be a process. This 
means that the CPU will have to do extra work for those schemes to be effective.
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▪ Process scheduling:

▪ Pre-emptive schemes include:

▪ Shortest Remaining Time (SRT):

▪ It is the pre-emptive version of SJN. In this scheme, the process scheduler keeps 
track of the estimated run-time of processes in the Ready state and the 
estimated remaining run-time of a process in the Run state.

▪ Consider the following scenario:

▪ Process A is in Ready state it has 0.0033 seconds of estimated run-time.

▪ Process B is in Run state it has 0.0024 seconds of remaining run-time.

▪ Process C is in New State and it has 0.0012 seconds of estimated run-time.

▪ What happens when Process C comes to ready state?
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▪ Process scheduling:

▪ Pre-emptive schemes include:

▪ Shortest Remaining Time (SRT):

▪ It is the pre-emptive version of SJN. 

▪ Consider the following scenario:

▪ Process A is in Ready state it has 0.0033 seconds of estimated run-time.

▪ Process B is in Run state it has 0.0024 seconds of remaining run-time.

▪ Process C is in New State and it has 0.0012 seconds of estimated run-time.

▪ What happens when Process C comes to ready state?

▪ Since SRT favours processes with the shortest run time, Process C is moved 
to the head of the Ready queue.

▪ Now, a process in the Ready state has estimated run-time shorter than the 
remaining run-time of the current process in the run state.

▪ The process scheduler stops Process B and puts Process C in running state.

▪ Since process B has less time that Process A, it is moved to the head of the 
Ready queue.
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▪ Process scheduling:

▪ Pre-emptive schemes include:

▪ Round Robin:

▪ In this scheme, processes are given a slice of CPU timing. This slice is called a 
Process Time Quantum.

▪ Instead of forcing a Process to move from Running state to a Ready state, Round 
Robin decides a time quantum equal for each process. 

▪ Once this time quantum expires, the process is then moved to the tail of the 
Ready queue, allowing the process in the head of the queue to run.

▪ Time Quantum allocations are extremely important for performance. 

▪ If a Process requires less time quantum than it has, its time quantum will finish 
once it finishes.

▪ This requires an additional data structure to keep track of all this information. 

▪ This data structure is called a Request Queue. 

▪ A process is entered to the queue at the beginning of the access cycle.

▪ Let us see an example of how this works:
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▪ Round Robin: In this example, the time quantum is 3 ms.

ms
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▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process A arrives to the Ready Queue and entered to the 
Request Queue. 
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▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process A arrives to the Ready Queue and entered to the 
Request Queue. 

▪ Since there is no other Process in the request queue, it is set to 
Running state and receives a time quantum of 3 ms.

▪ While A was running, at 1 ms, Process B also arrived to 
the Ready state and put into the request queue 
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▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process A only needed 3 ms to finish, once it is done, it is 
removed from the queue.

▪ Process B is sent to the running state, and given 3 ms
quantum.

▪ At 4 ms, Process C arrived to the Ready queue and put 
in the request queue
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▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process B used its quantum and ran for 3 ms seconds.

▪ It is then removed from the head of the queue and 
added to the tail of the queue with its remaining RT

▪ Next in the queue is process C. it is given a 3 ms quantum, 
but it only needs 2 ms.

▪ At 7 ms Process D arrives to Ready state. It is put into 
the request Queue.
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▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process B used its quantum and ran for 3 ms seconds again, 
but it did not finish yet.

▪ It is then removed from the head of the queue and 
added to the tail of the queue with its remaining RT

▪ Next in the queue is process D. it is given a 3 ms quantum.
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▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process B used its quantum and ran for 3 ms seconds again, 
but it did not finish yet.

▪ It is then removed from the head of the queue and 
added to the tail of the queue with its remaining RT

▪ Next in the queue is process D. it is given a 3 ms quantum.
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▪ Round Robin: In this example, the time quantum is 3 ms.

▪ Process D used its quantum and ran for 3 ms seconds again, 
but it did not finish yet.

▪ It is then removed from the head of the queue and 
added to the tail of the queue with its remaining RT

▪ Next in the queue is process B. it is given a 3 ms quantum, 
but it only needs 1 ms, so it runs until if finishes, then process 
D is ran for 2 ms until it finishes
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▪ Round Robin: In this example, the time quantum is 3 ms.

All process in the request queue are done.
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▪ Context Switching:

▪ Now we know what a process is, what are the process states and how it is changed 
from Ready state to Running.

▪ But we still do not know how it is changed from Running state to Waiting/Ready 
state.

▪ Context switching is the mechanism that a process is changed from the Running 
State to the Ready or Waiting state.

▪ Context switching happens when a Running state is interrupted because of an event.

▪ An event is called an interrupt.

▪ There are many types of interrupt:

▪ Software interrupts: caused by software (program instructions)

▪ Syscalls / Device Drivers / Sub-routines

▪ Hardware interrupts

▪ I/O inputs / Device Controllers / Pre-emptive process schedulers
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▪ Context Switching:

▪ Once an interrupt occurs, the CPU diverges its attention to handle an interrupt - if it is a 
software interrupt - or service the interrupt Request - if it was hardware interrupt.

▪ Almost all types of interrupts are handled by the OS services.

▪ Some execution signals coming from the peripherals of the CPU are handled by the 
CPU itself.

▪ An interrupt can send a process into a Waiting state if it requires the process to wait for 
I/O or resources.

▪ An interrupt can send a process into a Ready state if it is issued by the process scheduler
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