
3 Applications of partial derivatives

3.1 Gradient

The function of two variables z = f(x, y) associates to any point P (x, y)
in the domain of that function D one value of the dependent variable z or a
scalar. To any point in the domain of the function there is related a scalar.
Hence, the function of two variables creates a scalar �eld in the plane.

The function of two variables w = f(x, y, z) associates to any point
P (x, y, z) in its domain V a scalar, i.e creates a scalar �eld in the domain V .
Examples used in physics include the temperature distribution throughout
space, the pressure distribution in a �uid or in a gas. Scalar �elds are cont-
rasted with other physical quantities such as vector �elds, which associate a
vector to every point of a region.

De�nition 1.

grad z =

(
∂z

∂x
,
∂z

∂y

)
(3.1)

is called the gradient of the scalar �eld z = f(x, y).
De�nition 2. The vector

gradw =

(
∂w

∂x
,
∂w

∂y
,
∂w

∂z

)
(3.2)

is called the gradient of the scalar �eld w = f(x, y, z).
In the �rst case there is de�ned a vector �eld in the plane and in the

second case a vector �eld in the space. These are called the gradient �eld.

If
−→
s◦ = (cosα, cos β) denotes the unit vector in the direction of the vector

−→s , the formula (2.20) can be written as the scalar product of the gradient

and the unit vector
−→
s◦

∂z

∂−→s
= grad z ·

−→
s◦

Since
−→
s◦ =

−→s
∆s

, then

∂z

∂−→s
= grad z ·

−→s
∆s

= |gradz| grad z · −→s
| grad z|∆s

where | grad z| is the length of the gradient vector. Denoting by ϕ the
angle between the gradient and the vector −→s we obtain

cosϕ =
grad z · −→s
| grad z|∆s
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and
∂z

∂−→s
= | grad z| cosϕ. (3.3)

−→s

gradz

|gradz|cosϕ

ϕ

Now we formulate this result as a theorem.
Theorem 1. The directional derivative of the function z = f(x, y) equals

to the projection of the gradient vector onto the direction of vector −→s .
Two important conclusions of this theorem.
Conclusion 1. The directional derivative in direction perpendicular to

the gradient equals to zero.

This conclusion is obvious because in our case ϕ =
π

2
and

∂z

∂−→s
= 0.

Conclusion 2. The directional derivative has the greatest value in the
direction of the gradient and equals to the length of the gradient.

It's enough to recall that the cosine function obtains its greatest value 1
if ϕ = 0. Thus, the direction of fastest change for a function is given by the
gradient vector at that point.

Example 1. Find the greatest rate of growth of the function z = x2 + y2

at the point P (1; 1).
The directional derivative gives the instantaneous rate of change at the

given point. The greatest instantaneous rate of change equals to the length
of the gradient. We �nd the gradient vector at the point P

grad z = (2x, 2y)

∣∣∣∣
P

= (2; 2)

and its length | grad z| = 2
√

2.
This result is the same as the result in Example 1 of the previous subsec-

tion, where we have found the directional derivative in direction of the vector
−→s1 . This is natural because the vector −→s1 = (1; 1) and the gradient have the
same directions.
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Theorem 2. The gradient is perpendicular to the tangent of level curve.
Proof. The projection of the level curve of the surface z = f(x, y) onto

xy-plane is f(x, y) = c. This is an implicit function of one variable and the
graph is a curve in xy-plane. The slope of the tangent line of this curve is
dy

dx
= −f

′
x

f ′y
. Hence, the direction vector of the tangent line is

−→s =

(
1;−f

′
x

f ′y

)
=

1

f ′y
(f ′y,−f ′x)

The scalar product of the gradient vector and the direction vector of the
tangent line

grad z · −→s = f ′xf
′
y − f ′yf ′x = 0

which means that these two vectors are perpendicular.
Now the Conclusion 1 gives us.
Conclusion 3. The derivative in the direction of the tangent line of the

level curve equals to zero.
In Example 1 of the previous subsection the vector −→s2 has the same direc-

tion as the tangent line of the level curve. Thus, by Conclusion 3 it is natural
that the derivative in the direction of this vector equals to zero.

De�nition 3. A vector �eld
−→
F = (X(x, y), Y (x, y)) is called a conserva-

tive vector �eld if there exists a scalar �eld z = f(x, y) such that
−→
F = grad z.

If
−→
F is a conservative vector �eld then the function f(x, y) is called a potential

function for
−→
F .

All this de�nition is saying is that a vector �eld is conservative if it is also
a gradient vector �eld for some scalar �eld.

Example 2. The vector �eld
−→
F = (2xy;x2) is conservative because there

exists the scalar �eld z = x2y such that grad z =
−→
F and x2y is the potential

function for
−→
F .

3.2 Divergence and curl

The gradient vector �eld is just one example of vector �elds. More ge-

nerally, a vector �eld
−→
F = (X(x, y, z);Y (x, y, z);Z(x, y, z)) is an assignment

of a vector to each point (x, y, z) in a subset of space. Vector �elds are often
used to model, for example, the strength and direction of some force, such
as the magnetic or gravitational force, as it changes from point to point or
the speed and direction of a moving �uid throughout space.

De�nition 1. The scalar

div
−→
F =

∂X

∂x
+
∂Y

∂y
+
∂Z

∂z
(3.4)
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is called the divergence of the vector �eld
−→
F at the point P (x, y, z).

De�nition 2. The vector

curl
−→
F =

(
∂Z

∂y
− ∂Y

∂z
;
∂X

∂z
− ∂Z

∂x
;
∂Y

∂x
− ∂X

∂y

)
(3.5)

is called the curl (or rotor) of the vector �eld
−→
F at the point P (x, y, z).

Example 1. Find the divergence and curl of the vector �eld
−→
F =(

xyz;x2 + z2;
xy

z

)
.

In this example X = xyz, Y = x2 + z2, Z =
xy

z
, thus,

∂X

∂x
= yz,

∂Y

∂y
= 0

and
∂Z

∂z
= −xy

z2
. Hence, the divergence

div
−→
F = yz − xy

z2

The components of the curl vector

∂Z

∂y
− ∂Y

∂z
=
x

z
− 2z

∂X

∂z
− ∂Z

∂x
= xy − y

z

and
∂Y

∂x
− ∂X

∂y
= 2x− xz

Consequently,

curl
−→
F =

(x
z
− 2z;xy − y

z
; 2x− xz

)
If the vector �eld represents the velocity of a moving �ow in space, then

the divergence of a vector �eld
−→
F at point P (x, y, z) represents a measure of

the rate at which the �ow diverges (spreads away) from P . That is, div
−→
F
∣∣
P
is

the limit of the �ow per unit volume out of the in�nitesimal sphere centered

at P . The curl represents the rotation of a �ow, i.e. curl
−→
F
∣∣
P
measures the

extent to which the vector �eld
−→
F rotates around P .

Suppose that
−→
F is the velocity �eld in a �owing �uid. Then the curl

−→
F

represents the tendency of particles at the point (x, y, z) to rotate about the

axis that points in direction of curl
−→
F . The length of curl vector represents

the velocity of that rotation.

If curl
−→
F =

−→
0 , the vector �eld

−→
F is called irrotational.

In �eld theory there is used a formal vector.
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De�nition 3. The vector

∇ =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
is called Hamilton nabla vector or Hamilton nabla operator.

The coordinates of this vector are not numbers but some operators. The
�rst coordinate means that we �nd the partial derivative with respect to x
for some function etc.

If we treat this vector as an usual vector, we can write for the scalar �eld
w = f(x, y, z)

∇w =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
w =

(
∂w

∂x
;
∂w

∂y
;
∂w

∂z

)
= gradw

Here we have the formal scalar multiplication of∇ and w. The order of factors
is important. The quantities on which ∇ acts must appear to the right of ∇.

The scalar product of∇ and the vector �eld
−→
F = (X(x, y, z);Y (x, y, z);Z(x, y, z))

is

∇ ·
−→
F =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
· (X;Y ;Z) =

∂X

∂x
+
∂Y

∂y
+
∂Z

∂z
= div

−→
F

The vector product of∇ and the vector �eld
−→
F = (X(x, y, z);Y (x, y, z);Z(x, y, z))

is

∇×
−→
F =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
×(X;Y ;Z) =

(
∂Z

∂y
− ∂Y

∂z
;
∂X

∂z
− ∂Z

∂x
;
∂Y

∂x
− ∂X

∂y

)
= curl

−→
F

Hence, using the nabla operator, we can write

gradw = ∇w

div
−→
F = ∇ ·

−→
F

curl
−→
F = ∇×

−→
F

De�nition 4. The scalar product of nabla vector by itself ∇2 = ∇ ·∇ is
called Laplacian operator and denoted

4 = ∇2

The scalar product of nabla vector by itself is not a real quantity

4 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
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but applying this operator to some function, we obtain at every point of the
space a scalar.

Example 2. Find the Laplacian operator for the function w = ex sin(yz).
First we �nd the �rst-order partial derivatives

∂w

∂x
= ex sin(yz)

∂w

∂y
= zex cos(yz)

∂w

∂z
= yex cos(yz)

and next

4w =
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

= ex sin(yz)− z2ex sin(yz)− y2ex sin(yz)

= ex sin(yz)(1− z2 − y2) = w(1− z2 − y2)

Finally we prove some equalities that hold for the scalar �eld w = f(x, y, z)

and vector �eld
−→
F = (X;Y ;Z).

Corollary 1. div gradw = 4w
Proof We write

div gradw = ∇·gradw =

(
∂

∂x
;
∂

∂y
;
∂

∂z

)
·
(
∂w

∂x
;
∂w

∂y
;
∂w

∂z

)
=
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

3.3 Local extrema of function of two variables

The theory of maxima and minima for the functions of two variables is
similar to the theory for one variable.

De�nition 1. It is said that the function of two variables f(x, y) has a
local maximum at the point P1(x1, y1), if there exists a neighborhood of this
point Uε(x1, y1) such that for any P (x, y) ∈ Uε(x1, y1)

f(x, y) < f(x1, y1)

De�nition 2. It is said that the function of two variables f(x, y) has a
local minimum at the point P2(x2, y2), if there exists a neighborhood of this
point Uε(x2, y2) such that for any P (x, y) ∈ Uε(x2, y2)

f(x, y) > f(x2, y2)
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Local extremum is either a local maximum or a local minimum.
Example 1. By De�nition 2 the function z = x2 + y2 has the local

minimum at the point P0(0; 0) because f(0; 0) = 0 and for any point P (x, y)
di�erent of P0 there holds f(x, y) = x2 + y2 > 0.

Example 2. The function z = x2 − y2 has no local extremum at the
point P0(0; 0). We have f(0; 0) = 0 and any neighborhood Uε(0; 0) contains
the points of x-axis and y-axis. At the points on x-axis y = 0 and z = x2 > 0,
at the points of y-axis x = 0 and z = −y2 < 0.

If the function of two variables has local extremum at the point P0(x0, y0)
then the intersection curve of surface (the graph of the function of two va-
riables) and the plain y = y0 has local extremum at x0. Hence, the function
of one variable z = f(x, y0) has local extremum at x0. It follows that at the

point P0 either
∂z

∂x
= 0 or does not exist.

As well, the intersection curve of surface and the plain x = x0 has local
extremum at y0. The function of one variable z = f(x0, y) has local extremum

at y0. Then at the point P0 either
∂z

∂y
= 0 or does not exist.

De�nition 3. The points, where
∂z

∂x
= 0 or does not exist and

∂z

∂y
= 0 or

does not exist, are called the critical points of the function of two variables.
Now we can formulate the theorem.
Theorem 1. (Necessary condition for existence of local extremum). If

the function z = f(x, y) has local extremum at the point P0, then P0 is the
critical point of this function.

This theorem says that the function of two variables has a local extremum
only at the critical point of this function. But the condition given in this
theorem is not su�cient for the function to have a local extremum. For
instance the point O(0; 0) is the critical point of the function z = x2 − y2

because the partial derivatives
∂z

∂x
= 2x and

∂z

∂y
= 2y both equal to zero at

this point, but as we know by Example 2, this function has no local maximum
and local minimum at O(0; 0).

Because of this theorem we know that if we have all the critical points of
a function then we also have every possible local extremum for the function.
The fact tells us that all local extrema must be at the critical points so we
know that if the function does have local extrema then they must be in the
set of all the critical points. However, it will be completely possible that at
least at one of the critical points the function hasn't a local extremum.

So the question is how to determine whether the function of two variables
has a local extremum at the critical point or not and if it has, is at that point
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a local maximum or a local minimum.
In the following we consider only the critical points where both partial

derivatives equal to zero, i.e. the system of equations
∂z

∂x
= 0

∂z

∂y
= 0

(3.6)

The solutions of this system of equations are called the stationary points

of the function z = f(x, y). Every stationary point is also a critical point
of the function of two variables but not vice versa. There exist the critical
points that are not the stationary points. For instance, for the function z =√
x2 + y2 the partial derivatives

∂z

∂x
=

x√
x2 + y2

and
∂z

∂y
=

y√
x2 + y2

are never simultaneously zero, however they both don't exist at O(0; 0). The-
refore, O(0; 0) is a critical point and a possible extremum. The graph of
z =

√
x2 + y2 is a cone opening upwards with vertex at the origin. Therefo-

re, at O(0; 0) this function has a local minimum at O(0; 0).
We �nd the su�cient conditions for existence of the local extremum at the

stationary points. Let P0 be a stationary point of the function z = f(x, y).
Evaluate the second order partial derivatives at P0 and denote

A =
∂2z

∂x2

∣∣∣∣
P0

B =
∂2z

∂x∂y

∣∣∣∣
P0

and C =
∂2z

∂y2

∣∣∣∣
P0

Theorem 2 (su�cient conditions for existence of a local extremum). Let
P0 be a stationary point of the function z = f(x, y).

1. If AC − B2 > 0 and A < 0 then the function z = f(x, y) has a local
maximum at P0.

2. If AC − B2 > 0 and A > 0 then the function z = f(x, y) has a local
minimum at P0.

3. If AC − B2 < 0 then the function z = f(x, y) has no local extremum
at P0.
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De�nition 4. If AC −B2 < 0 then the stationary point P0 is called the
saddle point of the function z = f(x, y).

We obtain the stationary point P0(0; 0) of the function z = x2 + y2 as the
solution of the system of equations (3.6){

2x = 0
2y = 0

We �nd

A =
∂2z

∂x2
= 2

B =
∂2z

∂x∂y
= 0

and

C =
∂2z

∂y2
= 2

Hence, AC − B2 = 4 > 0 and A > 0. Consequently, by Theorem 2 the
function z = x2 + y2 has at stationary point P0(0; 0) a local minimum.

We obtain the stationary point P0(0; 0) of the function z = x2− y2 as the
solution of the system of equations (3.6){

2x = 0
−2y = 0

We �nd

A =
∂2z

∂x2
= 2

B =
∂2z

∂x∂y
= 0

and

C =
∂2z

∂y2
= −2

Thus, AC − B2 = −4 < 0. Consequently, by Theorem 2 the function z =
x2 − y2 has't a local extremum at the stationary point P0(0; 0). In other
words: the point P0(0; 0) is the saddle point of the function z = x2 − y2.
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y

x

z

1

1

Joonis 3.1: Saddle surface

Example 3. Find the local extrema of the function f(x, y) = 4 + x3 +
y3 − 3xy.

The �rst order partial derivatives are

∂f

∂x
= 3x2 − 3y and

∂f

∂y
= 3y2 − 3x

To �nd the stationary points we solve the system of equations (3.6){
3x2 − 3y = 0
3y2 − 3x = 0

or {
x2 − y = 0
y2 − x = 0

The �rst equation gives y = x2. Substituting this into second equation gives
x4 − x = 0 or x(x3 − 1) = 0, whose solutions are x1 = 0 and x2 = 1. Since
y = x2, we have two stationary points P1(0; 0) and P2(1; 1). Next we �nd the
second order partial derivatives

∂2f

∂x2
= 6x

∂2f

∂x∂y
= −3 and

∂2f

∂y2
= 6y
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Since at the �rst stationary point P1(0; 0) the values A = 0, B = −3 and
C = 0 and

AC −B2 = 0 · 0− (−3)2 = −9

the point P1(0; 0) is the saddle point of the given function.
At the second stationary point P2(1; 1) the values A = 6, B = −3 and

C = 6 and
AC −B2 = 6 · 6− (−3)2 = 27 > 0

As well A = 6 > 0 and by Theorem 2 the given function has a local minimum
at the point P2(1; 1) and this local minimum equals to

zmin = 4 + 13 + 13 − 3 · 1 · 1 = 3

Remark If in Theorem 2 AC − B2 = 0 then anything is possible. More
advanced methods are required to classify the stationary point properly.
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