SHIP DESIGN

Prof. Carlo F.M. Bertorello

Partner universities:

University of Zagreb Faculty of Mechanical Engineering and Naval Architecture

University of the Aegean

Co-funded by the Erasmus+ Programme of the European Union

SHIPMARTECH

01.07.2023

Ship Design

- ▶ 6 ECTS (150h)
- Work load: 48 hours of frontal lessons + 102 self-study
- Prerequisites/ co-requisites:
 - Ship Stability Resistance Propulsion -Seakeeping-
- Masters' mandatory course

Objectives

- Adequate knowledge of the various aspects of the ship design:
 - Data base analysis and comparison with reference ships;
 - Main dimension and displacement evaluation and hull form definition. Preliminary layout and GA plans.
 - Powering and maneuverability performances assessment
 - Regulatory frameworks references, including the most recent relating to environmental sustainability.
- Adequate knowledge of technical and design aspects of environmental indexes and zero emission capabilities.
- General knowledge of the interaction between ship design and ship management. Energy saving issues.
- Basic knowledge of future scenarios of ship propulsion.

Intended Learning Outcome (ILO)

At the end of the course the student will have to demonstrate that he is able to set up the preliminary design of a ship on the basis of defined functional specifications and/or mission profiles.

Teaching and learning formats and methods

- Development is promoted through the following teaching and learning methods:
 - The student attends the class presentations and guest lectures.
 - The student chooses a reference ship among a given list and develops a basic design on the basis of a mission profile defined together with the teacher.

Learning resources, readings, references

- Illustrative slides of the lessons available on the Teams channel of the course of each academic year
- References for Displacement assessment, Powering performances and Maneuverability Assessment available on the Teams channel of the course of each academic year
- Apostolos Papanikolaou, Ship Design Methodologies of Preliminary Design, Springer
- A Seaman's Dictionary by Ranger Hope (2007)

Assessment

Final mark is obtained as combination of the technical report, a seminar presentation, reading notes and a work diary.

Assessment tool	Mark
Course oral exam	60 %
Basic design presentation	40 %
Total	100%

Lecture topics

- 1-Present scenarios for Ship Designers
- 2-Basic Ship Features DWT and Volumetric Ships Meaningful Parameters
- > 3-First steps in design procedure Main dimensions evaluation for DWT ships
- 4-Volumetric and other types of ships Peculiar Characteristics and Main Dimensions Evaluation
- 5-Containerships: Peculiar Characteristics and Main Dimensions Evaluation
- 6-Data base Analysis and MultiAttributeDecisionMaking for Ranking Existing Ships
- > 7-Hull form elements Hullform Representation and Modification
- 8-Load line, Tonnage and Regulatory frame
- 9-High Speed Craft and Small Craft
- 10-Hybrid and alternative auxiliary propulsions Zero Emission Capabilities Future Scenarios
- 11-Ship Design to Ship Management Energy Savings
- 12-Wellness and comfort onboard
- 13-APPENDIX 1 References for Displacement Prediction
- 14-APPENDIX 2 References for Powering Prediction
- 15 APPENDIX 3-References for Manouvrability Assessment
- ► 16-Basic design WORKSHOP-Notes for Development and Presentation

Course project

- Student will be provided with licence keys for AUTOSHIP AUTOHYDRO -AUTOPOWER
- Student will be provided with ELIWAG sw for propeller calculations
- Student will be provided with Excel files for Holthrop and Mennen's and Savitsky's procedures
- Student will be provided with Excel files for Batteries calculation in ZERO-EMISSION CAPABILITIES assessment