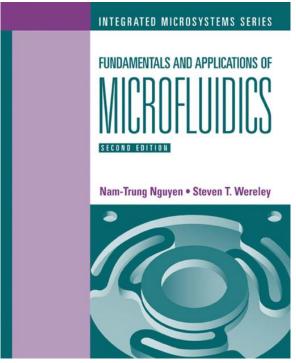

FABRICATION 1 LECTURE 3

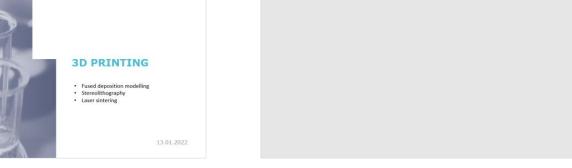

Tamás Pardy TalTech Lab-on-a-Chip

TALLINN UNIVERSITY OF TECHNOLOGY

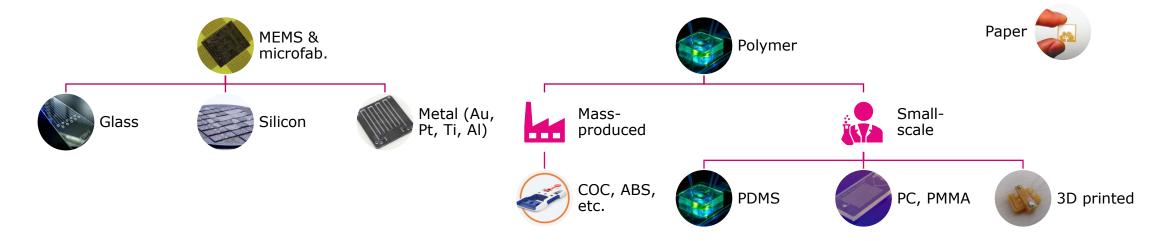
ADDITIONAL MATERIALS

- Lab-on-a-Chip. Miniaturized Systems for (Bio)
 Chemical Analysis and Synthesis
- R. Edwin (editor)
- ISBN: 978-0444511003
- Fundamentals and Applications of Microfluidics (2nd edition) Chapter III
- Nam-Trung Nguyen, Steven T. Wereley
- ISBN-10 1-58053-972-6
 ISBN-13 978-1-58053-972-2
- Additional materials:
 - RSC Lab-on-a-Chip journal

OVERVIEW

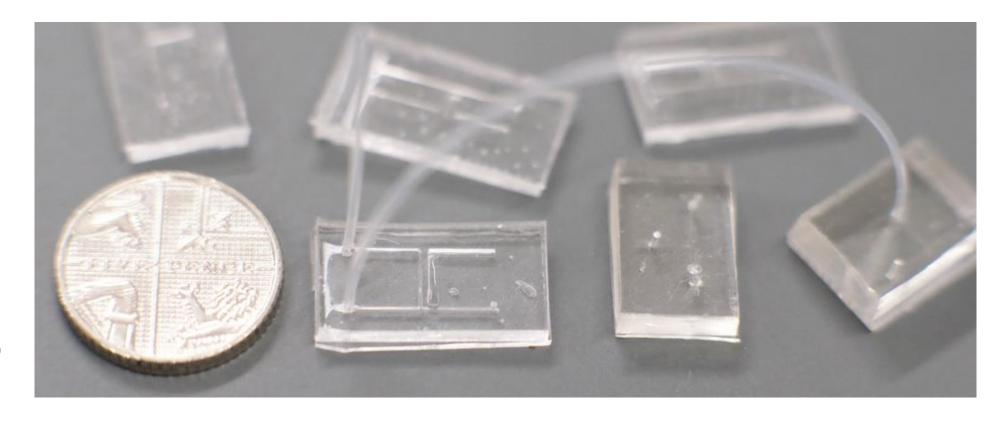


TALLINN UNIVERSITY OF TECHNOLOGY


13.01.2022

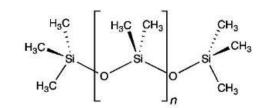
MATERIALS

- Common structural materials in microfluidics
- Polymers
- Glass
- Paper


FABRICATION & MATERIALS

MATERIALS

Conventional microfluidics chips made from PDMS, with H and T-junctions connected by microtubing. A five pence coin is shown for scale. Fabricated by friends in the Boutelle lab at Imperial College.



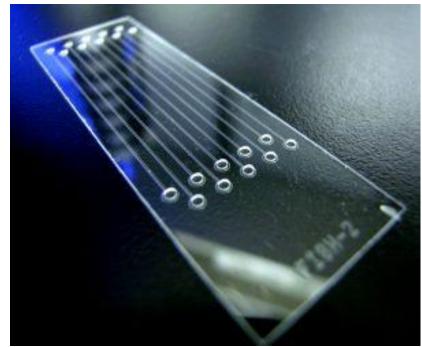
PDMS

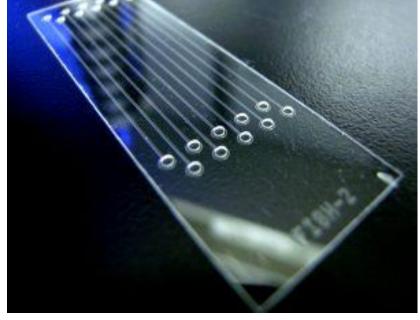
- PDMS (polydimethylsiloxane)
 - Elastomer: silicon-based organic polymer. Optically clear, chemically inert, non-toxic and non-flammable.
 - It is a type of silicone that is fully biocompatible and is even used in the food industry as an antifoaming agent.
 - In the labs we use Dow-Corning Sylgard® 18X.

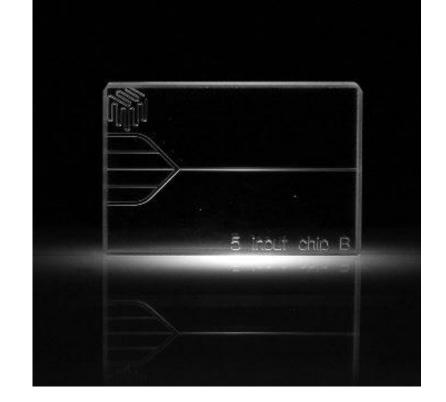
Pros/cons:

- (+) Inert, biocompatible
- (+) 6 nm feature size
- (-) Bubbles... a pain in mass-production
- (-) Labor-intensive fabrication and bonding

Property	Value	
3	2.68	
Heat cure	150 °C, 10 min	
k	0.27 W/(mK)	
ρ	2.9e14 Ωcm	

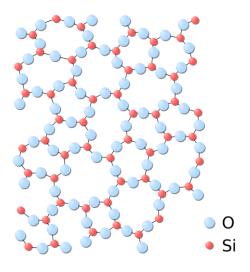


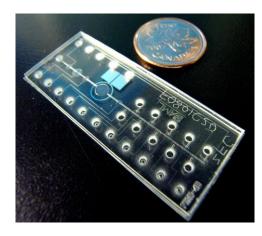

Only in the US...


13.01.2022

FABRICATION & MATERIALS

Glass microfluidic chips

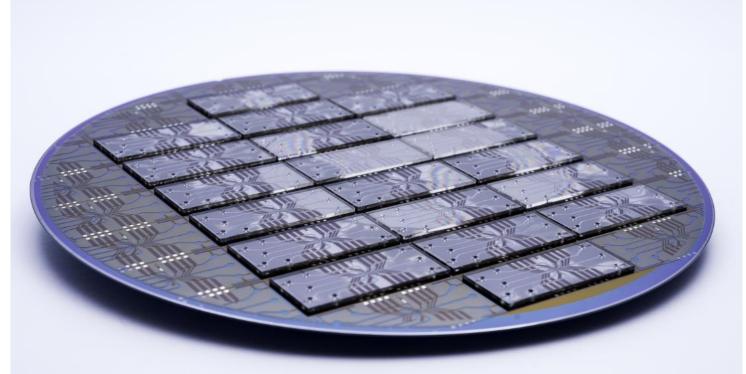



TALLINN UNIVERSITY OF TECHNOLOGY

MATERIALS: GLASS

- Glass: often transparent amorphous solid
- Silicate (SiO₂)/borosilicate glass
- Why glass?
 - Temperature and pressure-resistance
 - Chemically resistant (easy to clean)
 - Highly transparent
 - Fully biocompatible
 - Non-permeable to gas
 - Excellent quality control
- Why not glass?
 - Expensive

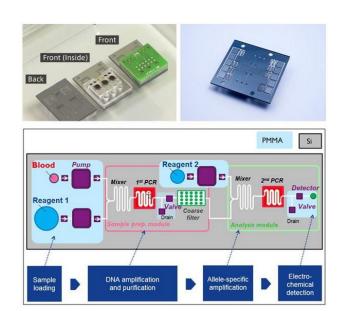
<u>This Photo</u> by Unknown Author is licensed under <u>CC BY-SA</u>

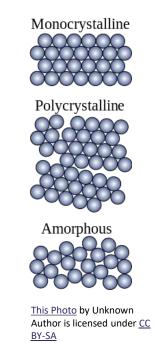


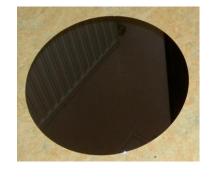
<u>This Photo</u> by Unknown Author is licensed under CC BY-SA

Property	Value
3	4.7
k	0.8 W/(mK)
ρ	1e0-1e4 Ωm

FABRICATION & MATERIALS

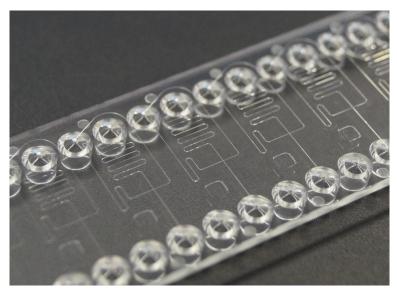

Silicon-glass chips

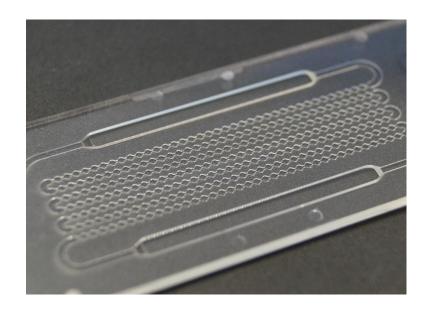



MATERIALS: SILICON

- Silicon: hard, brittle crystalline solid semiconductor
- Sealed by bonding glass/polymer plate
- Why silicon?
 - Temperature resistance but excellent heat conductivity
 - Chemically resistant (easy to clean)
 - Biocompatible
 - Micromachining yields high aspect ratio structures
 - Excellent quality control
- Why not silicon?
 - Expensive

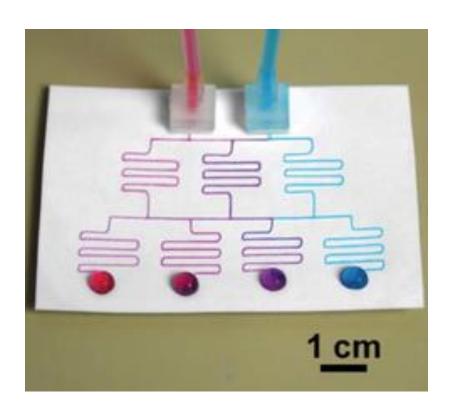
Property	Value	
3	11.68	
k	149 W/(mK)	
ρ	2.3e3 Ωm	


<u>This Photo</u> by Unknown Author is licensed under CC BY-SA


13.01.2022

FABRICATION & MATERIALS

Thermoplastics: polyethylene (PE), polystyrene (PS), polyethylene terephtalate (PET), polypropylene (PP), polycarbonate (PC) or cyclic olefin (co)polymers (COC/COP)

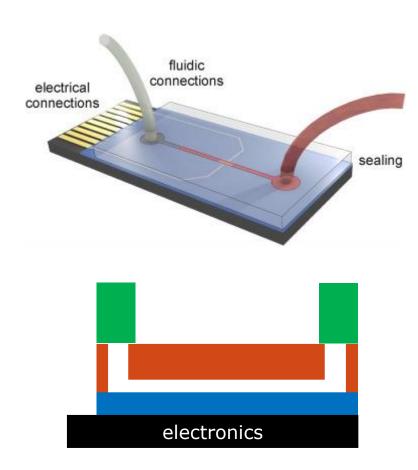


FABRICATION & MATERIALS

Paper LoC

MATERIALS

- Common structural materials in microfluidics
- Polymers
- Glass
- Paper



STRUCTURE

- Microfluidic chip layers
- Basic channel layouts
- Microfluidic system components
- Demo kits

MICROFLUIDIC DEVICE COMPONENTS

- Before we learn how to fabricate, let's see what we fabricate...
- Layers
 - Fluidic I/O layer (fluidic connections)
 - Teflon (PTFE) tubes OR on-chip integrated reservoirs
 - Liquid handling layer (chip body)
 - Channels
 - (optional) Sealing layer
 - Glass OR plastic film
 - Sometimes a PCB
 - Electronics layer
 - PCB or silicon

2. EXTERNAL SYSTEM COMPONENTS: LIQUID PATH

Reservoir:

Closed: pressure vessel, syringe

Open: Beaker, on-chip reservoir

Tubing:

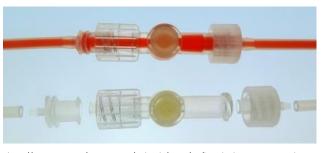
- Teflon tubes (1/16")
- Silicone tubing

Fittings, connectors:

- HPLC screw joint
- Luer-Lok™

Chip holder

Product collector:

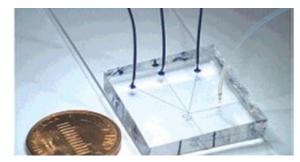

- External: e.g. beaker, pressure vessel (don't forget degassing ©)
- Internal: e.g. paper wicking pad

https://www.dolomitemicrofluidics.com/product/mitosfluika-pressure-vessel-100ml/

http://iris.fishersci.ca/LitRepo.nsf/0/37A8D30 084EEF537852579A500746038/\$file/7237017 2.pdf

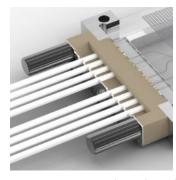
http://gonagen.com/wp-content/uploads/2014/11/luer-lock-connector-male-2.jpg

https://www.micronit.com/products/microfluidic-starter-kit.html


13.01.2022

MICROFLUIDIC CHIP COMPONENTS

Layers


- Fluidic I/O layer: typically Teflon (PTFE) tubes
- Liquid handling layer
- Electronics layer

Plug-in tubing (HPLC equipment)

http://2010.igem.org/wiki/images/e/eb/ESBS-Strasbourg-fluidfig1.jpg

Pressure contact (Dolomite)

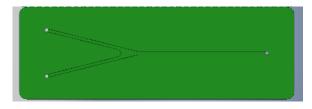
http://www.dolomitemicrofluidics.com/images/stories/microfluidicimages/newsupdate/dolomite_cavendish_optical-stretcher_1a.jpg

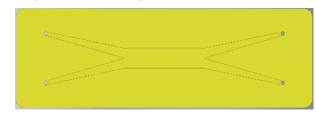
Screw joints

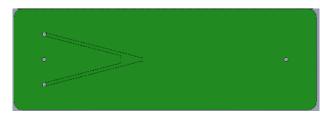
MICROFLUIDIC CHIP COMPONENTS

Layers

- Fluidic I/O layer
- Liquid handling layer
- Electronics layer

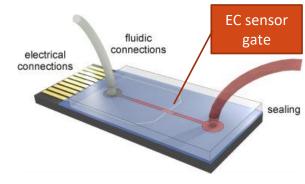

Straight chip


T chip (mixer)


Y chip (mixer)

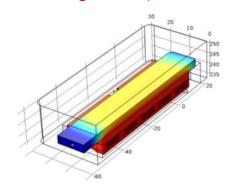
H chip (reactor/separator)

Focusing chip

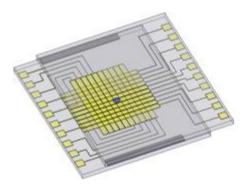

These example chips are all made by rapid prototyping and are available at TJS ELIN in 3D printing

MICROFLUIDIC CHIP COMPONENTS

Layers


- Fluidic I/O layer
- Liquid handling layer
- Electronics layer (integrated electronics)

Sensors (more in a later lecture)



https://ars.els-cdn.com/content/image/1-s2.0-S0167931714004456-gr1.jpg

Temperature regulation (more in a later lecture)

Fluidic actuators (more in a later lecture)

DEMO KITS

Demo kit ~5-10 k €

- Most microfluidics producers these days offer a starter kit in the 5-10 k€ range. Why?
- To get you to use their ecosystem ⊕
- To build and test basic proof-of-concept fluidic layouts for your idea

Contents: pumps, chips, etc.

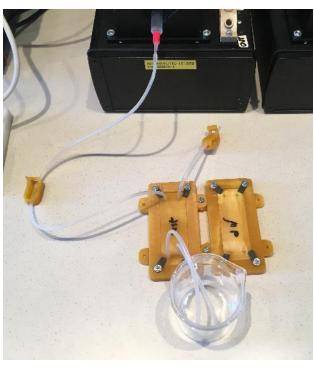
- Microfluidic pump(s)
- Microfluidic chips
- Microfluidic chip holder(s)
- Tubing, fittings, etc.

How does it work?

- A bit like LEGO®. You liked that as a kid, you'll probably like microfluidic starter kits. You just need to plug and play.
- Chips are slides (mostly 25 mm * 75 mm, same as microscope slides for obvious reasons)

Micronit starter kit

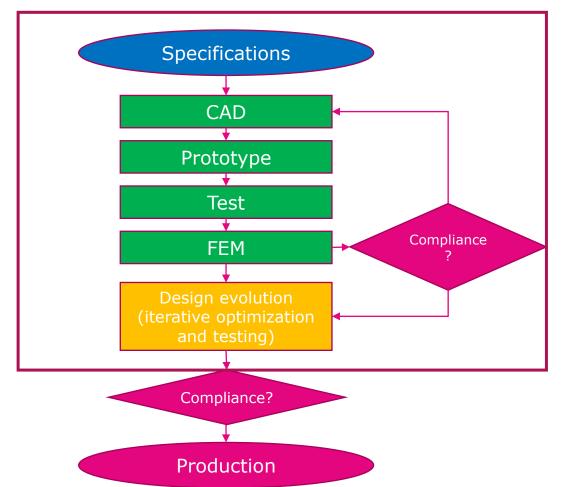
https://www.micronit.com/products/microfluidic-starter-kit.html

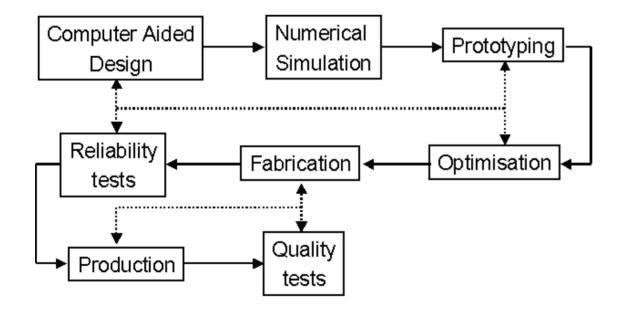


DEMO KITS: WE HAVE OURS!

- At TJS ELIN, we have...
 - 3D printed chips designed and fabricated in-house. Designs are available for printing in the R&D team's cloud.
 - 2 Syringe pumps
 - Thermostat with chip interface and camera
 - Accessories and consumables
- In the labs, you'll use this kit to experiment and measure.
 - Should you choose to stay and write your thesis with us, you'll gain access to the design library.

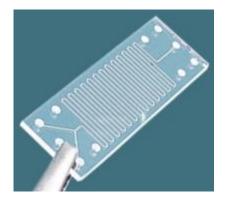
STRUCTURE


- Microfluidic chip layers
- Basic channel layouts
- Microfluidic system components
- Demo kits



- Polymers PDMS
- Milling
- Paper and screen printing

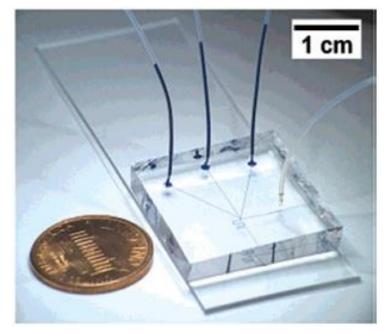
FABRICATION


Today's lecture

FABRICATION TECHNIQUES FOR POLYMERS

- Why polymers?
 - Cheap (max. 1-2 EUR per chip)
 - Easy to machine
 - Optically transparent (if needed)
 - Good thermal and electrical properties
 - High aspect-ratio for microstructures
 - Biocompatible (if needed)
 - Recyclable options available

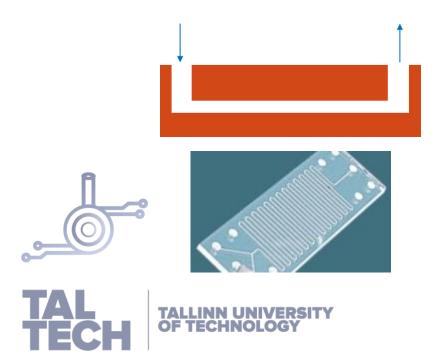
https://syntecoptics.com/polymer-opticsmicrofluidics/polymer-microfluidic-devices


https://en.wikipedia.org/wiki/HCG_pregnancy_ strip test

FABRICATION TECHNIQUES FOR POLYMERS

- NB! The chip is typically in the cm² range, but channels are sub-millimetre
- Polymers:
 - PDMS (polydimethylsiloxane)
 - Plastics (COC, PC, PMMA)
- Fabrication techniques:
 - 1. Soft-lithography (PDMS only)
 - 2. Milling (machining)
 - 3. Hot embossing (next lecture)
 - 4. Injection moulding (next lecture)

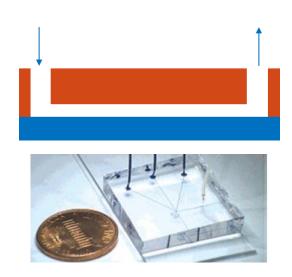
http://2010.igem.org/wiki/images/e/eb/ESBS-Strasbourg-fluidfig1.jpg



LAYER STRUCTURE OF POLYMER CHIPS

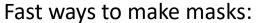
"Monolithic"

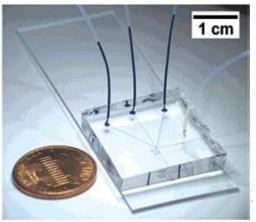
All features formed directly in the substrate.


Possible by additive manufacturing (e.g. 3D printing). Difficult to implement en masse...

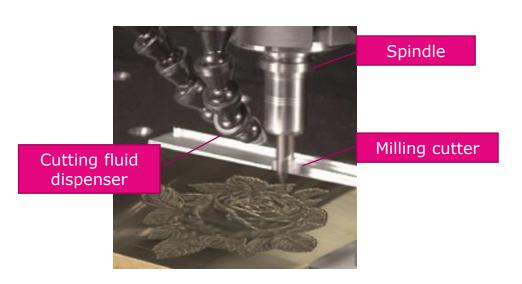
"Multi-layer"

The substrate is patterned to form channels & I/O features, and an unpatterned sealing layer is attached.

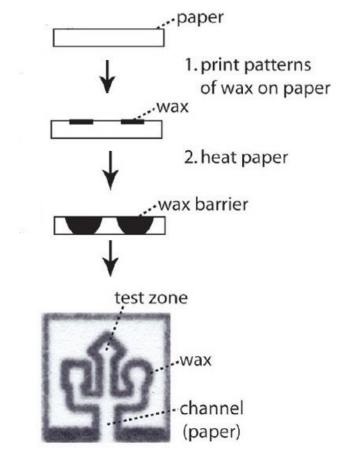

Most common approach.


FABRICATION TECHNIQUES: SOFT LITHOGRAPHY

- Soft lithography: replicating microstructures using elastomeric stamps, moulds and conformable photomasks
- PDMS is a pure, soft material (elastomer) that conforms very well to microstructures (down to nanoscale)
- Process:
- 1. Master mould fabrication (a-c)
- 2. Mix PDMS elastomer and curing agent
- 3. Pour on mould (d)
- 4. Dry
- 5. Tear off
- 6. Activate glass surface
- 7. Apply PDMS (e)


- Milling
- 3D printing
- Hot embossing

FABRICATION TECHNIQUES: MILLING


- Milling (machining): process of removing material by rotary cutters in a direction at an angle with the tool's axis.
- CNC (computer numerical control) milling machines are computer-controlled vertical mills with typically 3 normal axes (XYZ).
- Video: https://youtu.be/VCExAr17yU4?t=22
- In simple terms, it's a mechanical drill hung on a 3-axis frame
- Maximum resolution is determined by:
 - Precision of stepper motor
 - Size of drill bit
 - Substrate material properties (e.g. tensile strength)
- Input: CAD file + substrate
 Output: micromachined structure

PAPER MICROFLUIDICS

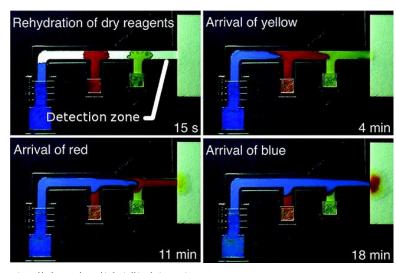
- Why use paper?
 - Extremely cheap (few cents per chip)
 - Easy to manufacture
 - Good disposability
- But it's not a tried-and-true method yet
- Typical production method:
 - 1. Porous (e.g. filter) paper
 - 2. Screen print wax barriers
 - 3. Bake in wax barriers
- 4. Screen print electrodes (optional)
- Video: https://youtu.be/J5LwNGm0tbw?t=102

 $\label{lem:http://www.elveflow.com/wp-content/uploads/2017/01/MICROFLUIDIC-PAPER-BASED-ANALYTICAL-DEVICES-Microfluidic-paper-based-devices-Wax-Printing1.jpg$

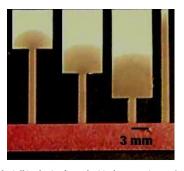
PAPER MICROFLUIDICS

- Typical production method:
- 1. Porous (e.g. filter) paper
- 2. Screen print wax barriers
- 3. Bake in wax barriers

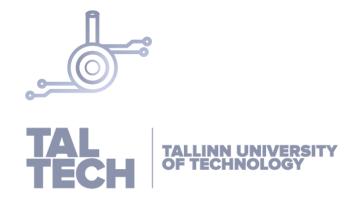
How does this work in Lab-on-a-Chip?

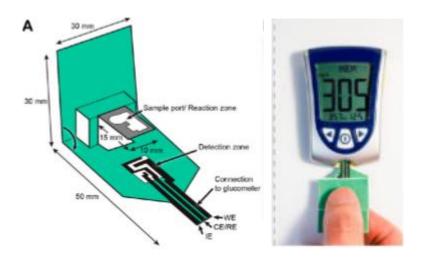

2DPN = 2-dimensional paper network

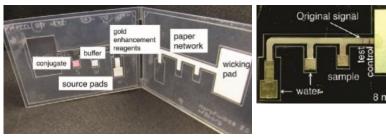
Similar methodology to pregnancy tests. Reagents are fixed on a paper substrate and liquids passing through the paper network will dissolve them.



Flow rates are possible to regulate through channel width.


http://mf20.org/sites/default/files/2dpn_color.png




http://mf20.org/sites/default/files/styles/large/public/Fig1-mod_0.jpg?itok=qPkY7pPl

PAPER MICROFLUIDICS

- So, what can you do with this?
- Mostly immunoassays: detecting antibodies produced by the immune system for specific biological targets (antigens)
- Examples:
 - ePad: the cartridge is readable by a regular glucometer
 - Malaria test 2DPN

http://pubs.acs.org/doi/pdf/10.1021/ac300689s

RAPID PROTOTYPING: "CHEAPO"

Sharpie microfluidics

Procedure:

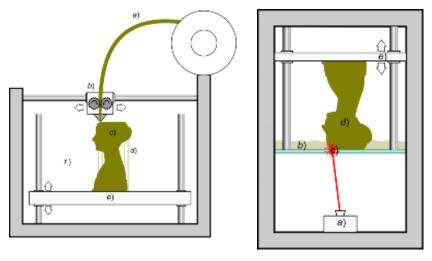
- Take a 25 mm * 75 mm glass microscope slide
- Use a permanent marker or a Sharpie to make walls that will guide the water
- The ink is hydrophobic, but the glass is hydrophilic, so water will stick to the glass and not wet the walls

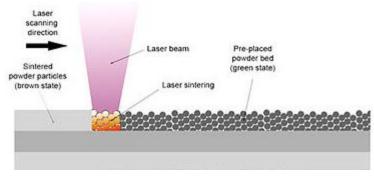
Scotch tape PDMS moulding

Procedure:

- Take a glass microscope slide
- Lay tracks of Scotch tape on them –
 make them as thin as possible and cut
 the rest with a scalpel
- Make a moulding well from aluminium foil and pour PDMS on your glass "master mould"
- Leave in the open for a night or bake at 60 C for 30 minutes to dry (will cause air bubbles)
- Remove PDMS
- Apply plasma treatment to another fresh glass slide and attach PDMS
- Punch input/output holes

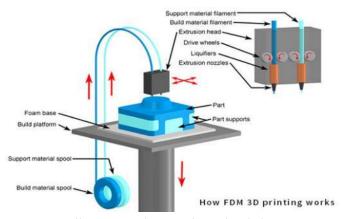
https://www.youtube.com/watch?v=eA
nittk0sac&ab channel=SusannBeier


- Polymers PDMS
- Milling
- Paper and screen printing


3D PRINTING

- Fused deposition modelling
- Stereolithography
- Laser sintering

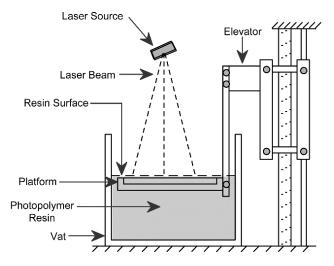
- Rapid prototyping: techniques to quickly fabricate a scale model or physical prototype using CAD (computer-aided design) models.
- 3D printing (additive manufacturing) is the most common rapid prototyping method.
- 1. Fused deposition modelling (FDM)
- 2. Stereolithography (SLA) or digital light processing (DLP)
- 3. Selective laser sintering (SLS)
- Voxel = 3D dot ☺



https://en.wikipedia.org/wiki/3D_printing

 $https://upload.wikimedia.org/wikipedia/commons/thumb/3/33/Selective_laser_melting_system_schematic.jpg/780px-Selective_schematic.jpg/780px-Selective_sc$

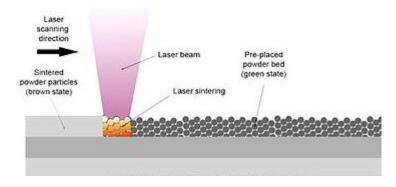
- Fused deposition modelling (FDM): a heated filament is deposited from a nozzle moved in xy axes, on a platform (z axis)
- Why FDM?
 - It's cheap (1200 EUR for a printer)
 - The material is cheap (30-50 EUR per spool)
 - It's good for larger structures (mm resolution)
- Why not FDM?
 - Simpler models mandate structural supports inside (no holes, channels etc.)
 - Resolution is worse than SLA, SLS



http://www.kul3d.com/wp-content/uploads/2014/08/LearnFDM.jpg

https://i.pinimg.com/736x/25/3b/b9/253bb9b42ac9e194c18d130f85de71ec--diy-d-printer-desktop-d-printer.jpg

- Stereolithography (SLA) or digital light processing (DLP): a resin monomer is polymerized by a directed light on a glass platform (only z axis)
- Why SLA/DLP?
 - Good resolution (50 µm voxel size)
 - Good printing speed (hours to a day)
 - Good prototype strength (but typically quite brittle)
 - Wide variety of plastics available
- Why not SLA/DLP?
 - High cost for printer (15k-250k EUR)
 - High cost for resin (500-800 EUR per bottle)
 - Typically limited part size (~50x50x60 [cm])

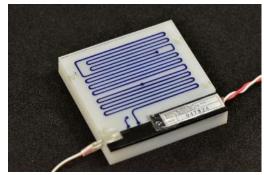


http://www.mkstechgroup.com/wp-content/uploads/2017/03/stereo-lith.png

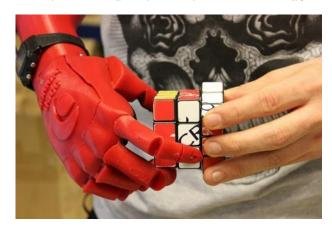
https://cdn-reichelt.de/bilder/web/xxl_ws/E400/FORMLABS_FORM2_01.png

- Selective laser sintering (SLS): a directed light sinters powder particles into layers
- Why SLS?
 - Good resolution
 - Fastest 3D printer
 - Complex geometries can be built in a single process without supports
 - Various finishing possibilities (metal, powder coating etc.)
 - Excellent mechanical properties
- Why not SLA/DLP?
 - Highest cost for printer and powders
 - Material porosity

https://en.wikipedia.org/wiki/3D_printing


http://hexus.net/media/uploaded/2013/11/660c800f-6a81-44e6-8977-2ddac339e7b6.jpg

3D PRINTING: COMPARISON


	FDM	SLA	SLS
Printer cost (min.)	~150€	~3.5k€	~12k€
Material cost	~30€	~300€	\$\$\$
Resolution	₩-> ₩	₩₩ -> ₩₩₩	
Internal supports	Needed	Not needed	Not needed
Best for	Large structures e.g. housing	Small parts e.g. chips	Anything

3D PRINTING: WHY THE HYPE?

- 3D printing helps to
 - produce individual prototypes
 - upscale to production
- In Lab-on-a-Chip
 - SLA/SLS prototypes have working fluidics and some can house reactions too
- In general, 3D printing:
 - Can bring advanced tools to a wider audience via open-source design repositories
 - Decrease logistics costs in manufacturing
 - Produce customized hardware

http://microfluidics.jp/en/wp-content/uploads/2015/01/DSC1467.jpg

https://goo.gl/images/cGroro

3D PRINTING: WHERE DO I BEGIN?

- You can get yourself a DIY 3D printer for ~150 EUR!
- Bear in mind however, that there's a steep learning curve.
- Here's a nice summary of the best DIY 3D printers:
- https://all3dp.com/1/best-cheapdiy-3d-printer-kit/

Prusa i3, the best DIY printer (also most expensive). Buy hey, it's designed and built in the EU ©

https://www.prusaprinters.org/prusa-i3/

RAPID PROTOTYPING AT TJS ELIN

1. Milling

- Available equipment: DATRON M7 HP
- Minimum feature size 0.1 mm
- Production time: few hours
- CAD file input format: STEP

2. 3D printing

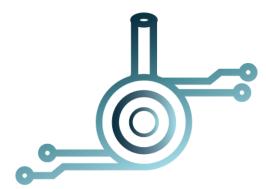
- Available equipment: Envisiontec Perfactory 4
- Minimum feature size: 0.025 0.05 mm
- Production time: few hours a day
- CAD file input format: STL

https://envisiontec.com/wp-content/uploads/2016/09/PerFactory-rebrand2.png

3D PRINTING

- Fused deposition modelling
- Stereolithography
- Laser sintering

IEE1860 BIOMEMS


Contact: tamas.pardy@taltech.ee

BIOMEMS

