

SENSORS LECTURE 8

Tamás Pardy TalTech Lab-on-a-Chip

TALLINN UNIVERSITY OF TECHNOLOGY

BEFORE WE BEGIN...

- Encyclopedia of Microfluidics and Nanofluidics
- Dongqing Li
- ISBN: 9780387324685
- Slides based on originals from IEE1720 lecture
 1 by Natalja Sleptšuk
- BioMEMS course, Peter Pazmany Catholic University, Budapest, Hungary (by: Kristof Ivan)
- Additional materials:
 - https://www.sciencedirect.com/science/article/pii/S0956566315303298

Dongqing Li *Editor-in-Chief*

Encyclopedia of Microfluidics and Nanofluidics

OVERVIEW

INTRODUCTION

- What are sensors?
- How do biosensors work?
- Human biomarkers

EXTERNAL SYSTEM COMPONENTS

- 1. Liquid path: → Lecture 3
 - Liquid reservoir
 - Tubing, fittings, chip holder, connector
 - Microfluidic chip (reactor)
 - Product/waste collector
- 2. Actuators (internal/external): → Lecture 9
 - Pump, valve, flow regulator
 - Thermal regulation (thermostat, heater etc.)
- 3. Sensors (internal/external):
 - Optical: camera, fluorometer etc.
 - Electrical: impedimetric sensors
 - Flow control: pressure sensor, flow meter
- Plus, power supply, control board, network interface, user I/O interfaces etc.

Transducer

Sensor:

"converts one form of energy to another, and in so doing detects and conveys information about some physical, chemical or biological phenomena"

Sensor, as **transducer**:

converts the **measurand** (a quantity or a parameter) into a signal that carries information

Transducer (Sensor)

Ideal sensor

- Measures continuously
- Is sensitive and selective
- Has fast and predictable response
- Has reversible behavior
- High SNR
- Compact
- Immune to environmental interference
- Is easy to calibrate

Categories

- Biosensor
- Smart sensor
- Passive/active
- Array type
- Multimodal...

Transfer function:

(Relation between output signal and measurand)

$$S = a + bs$$

S: output electric signal

a: intercept (output at zero input signal)

b: slope/sensitivity

s: input stimulus

Hysteresis (error):

Maximum difference between outputs at a specific point of input stimulus when approached first increasing then decreasing stimulus (e.g.: inflating and deflating a balloon while measuring pressure)

WHAT IS A BIOSENSOR?

- Goal: to tell how much of something you have in a solution
- Something = target/analyte, measured in **concentration** (e.g. molarity in mol/m^3 or mol/L

Principle

- A: Reaction, produces product P in a specific concentration
- B: transducer converts concentration to electric signal
- C: signal is amplified
- D: signal is processed
- E: processed, amplified signal is visualized in human-readable form

01.02.2022

HUMAN BIOMARKERS

■ **Biomarker**="chemical, its metabolite, or the product of an interaction between a chemical and some target molecule or cell that is measured in the human body" (WHO definition)

Biomarker concentration ⇔ physiological state of organism

- Example:
 - hCG as indicator of pregnancy
 - Released by placenta after implantation of fertilized egg
 - Rapid tests available since 60's, today <1€/test

Category	Detection target	Bodily fluid	Biomarker or
			substance
Cancer	prostate cancer	blood	PSA (prostate
detection			specific antigen)
	liver cancer	blood	AFP (tumor marker
			alpha-fetoprotein)
Other	pregnancy	urine	hCG (human
commonly			chorionic
used			gonadotropin)
Cardiac markers	myocardial damage	blood	troponin
	(infarction)		
	myocardial	blood	creatine kinase
	infarction (no		(CK-MB)
	skeletal muscle		
	damage)		
	myocardial	blood	lactate
	infarction		dehydrogenase
			(LDH-1)
Exposure to	lead	blood	blood lead
toxic	arsenic	urine	urinary arsenic
substance	nitrates	blood	methemoglobin
(biomonitoring)	phtalates	urine	phtalate metabolites

Source: (own work) course work report, IEM9040, by Tamas Pardy, 2014

INTRODUCTION

- What are sensors?
- How do biosensors work?
- Human biomarkers

- Different types of sensors: EM, Mechanical, Chemical
- Detection mechanisms
- Working principles

DETECTION METHODS

Technology

Labeling

- Labeled
- Label-free

Amplification

- Signal amplification
- Target amplification

State of organism

- In vivo
- In vitro
- Ex vivo (e.g. cell cultures)

SPECTROPHOTOMETRY

 Beer-Lambert Law: attenuation of light ⇔ properties of material being lit

$$A = \varepsilon l \mathbf{c} [a.u.]$$

- Measurement modes:
 - Absorbance

$$A = \frac{I_0}{I}$$

Transmittance

$$T = \frac{I}{I_0}$$

A: absorptivity [a.u.]

 ε : molal attenuation coefficient

 $\left[rac{m^2}{mol}
ight]$

l: optical path length [m]

c: concentration of species

 $\left[\frac{mol}{m^3}\right]$

SPECTROPHOTOMETRY

 Beer-Lambert Law: attenuation of light ⇔ properties of material being lit

$$A = \varepsilon l c [a.u.]$$

- Measurement modes:
 - Absorbance

$$A = \frac{I_0}{I}$$

Transmittance

$$T = \frac{I}{I_0}$$

A: absorptivity [a.u.]

 $\varepsilon{:}\,molal\,\,attenuation\,\,coefficient$

l: optical path length [m]

c: concentration of species

 $\left[\frac{mol}{m^3}\right]$

SPECTROPHOTOMETRY

Beer-Lambert Law:
 attenuation of light ⇔ properties of material being lit

$$A = \log_{10} \left(\frac{I_0}{I} \right) = \varepsilon l \mathbf{c}$$

- Measurement modes:
 - Absorbance

$$A \approx \frac{I_0}{I}$$

• Transmittance

$$T = \frac{1}{A} \approx \frac{I}{I_0} \qquad \qquad \begin{array}{c} I \to 0 \\ T \to 0 \end{array}$$

Transparent:

$$I = I_0$$

$$T \approx 100\%$$

$$A \approx 0\%$$

Opaque:

$$I \rightarrow 0$$

$$T \rightarrow 0\%$$

$$A \rightarrow 100\%$$

This Photo by Unknown Author is licensed under CC BY-SA

FLUOROMETRY

• Fluorochrome/fluorophore: molecule that absorbs energy from incoming light and emits another light

$$E = h \frac{c}{\lambda} [J]$$

- Where h: Planck's constant, c: speed of light [m/s], λ: light wavelength [m]
- Fluorescent intensity ⇔ lifetime

$$I(t) = I_0 e^{\left(-\frac{t}{\tau}\right)}$$

 τ : fluorescent lifetime

FLUOROMETRY

Special cases

Fluorescence Measurements, Figure 4 The schematic concept of TIRF. FM = fluorochrome molecules. Note that only fluorochrome molecules that reside very close to the solid-fluid interface is illuminated by the excitation light and generates the emission light; the other fluorochrome molecules are not involved in the measurement

Fluorescence Measurements, Figure 3 The schematic concept of a confocal fluorescence microscope configuration. LS = light source, OD = optical detector, ExF = excitation filter, EmF = emission filter, DM = dichroic mirror, L = lens, FM = position of fluorochrome molecules, LSP = Light-source pinhole, and DP = detector pinhole. Note that the emission light coming from out-of-focus fluorochrome molecules is blocked away by the detector pinhole

AMPEROMETRY

- Faraday's first law of electrolysis:
 "the amount of chemical change produced by current
 at an electrode-electrolyte boundary is proportional to
 the quantity of electricity used"
- Reaction: reduction-oxidation (redox)
- Electrodes:
 - Working (where the reaction e.g. oxidation happens, material e.g. C, Au)
 - Auxiliary (counter, where the reaction goes in the opposite direction, e.g. reduction, material e.g. Pt)
 - Reference (Ag/AgCl)
- Amperometry:
 - Voltage applied to working electrode
 - Current measured from working to counter electrode

$$i_t = \frac{\partial Q}{\partial t} = \eta F \frac{\partial N}{\partial t}$$

 i_t : current generated at time t[A]

Q: charge [C]

η: valency

N: moles of analyte [mol]

F: *Faraday constant*

AMPEROMETRY

- Faraday's first law of electrolysis: "the amount of chemical change produced by current at an electrode-electrolyte boundary is proportional to the quantity of electricity used"
- Reaction: reduction-oxidation (redox)
- Electrodes:
 - **Working** (where the reaction e.g. oxidation happens, material e.g. C, Au)
 - Auxiliary (counter, where the reaction goes in the opposite direction, e.g. reduction, material e.g. Pt)
 - Reference (Ag/AgCl)
- Amperometry:
 - Voltage applied to working electrode
 - Current measured from working to counter electrode

Faraday's law of electrolysis:

$$i_t = \frac{\partial Q}{\partial t} = \eta F \frac{\partial N}{\partial t}$$

 i_t : current generated at time t[A]

Q: charge [C]

η: valency

N: moles of analyte [mol]

F: *Faraday constant*

Electrochemical

POTENTIOMETRY

- Setup similar to amperometry, but
 - Electrode impedance high → minimal current flow
 - Charge accumulation on electrode → Nernst potential measured

$$E = E^0 - \frac{0.059}{|n|} \log \left(\frac{a_C^{\chi} a_D^{\delta}}{a_A^{\alpha} a_B^{\beta}} \right)$$

E: working electrode potential [V] E^0 : standard electrode potential

n: number of e

a: activity of A - D

Electrochemical

CYCLIC VOLTAMMETRY

- Working electrode potential linearly and cyclically ramped in time
- Electrode potential: $E = E_i + vt$
 - E_i : initial potential [V]
 - v: sweep rate $\left[\frac{v}{s}\right]$
 - *t:time* [*s*]
- Concentration (Fick's 2nd law):

•
$$\frac{\partial \mathbf{c}}{\partial t} = D \frac{\partial^2 \mathbf{c}}{\partial x^2}$$

Concentration change <->
 diffusion (to electrode surface)

This Photo by Unknown Author is licensed under CC BY-SA

IMPEDANCE SPECTROSCOPY

- Tissue ~ resistor(s) + capacitor(s)
- If we use A.C. excitation, e.g. sinusoidal, complex impedance will change according to the excitation frequency
- Cells:

This Photo by Unknown Author is licensed under CC BY-SA

Resistor:

$$Z_R = \frac{V(t)}{I(t)} = Re(Z) - j \cdot Im(Z)$$

Capacitor:

$$Z_C = \frac{1}{j\omega C}$$

 ω : angular freq.

 $\omega = 2\pi f$ where f: excitation freq.

Electrochemical

IMPEDANCE SPECTROSCOPY

- Tissue ~ impedance(s) + capacitance(s)
- We measure varying impedance in response to voltage change

Setup:

- working + counter electrode + max. 2 reference electrodes
- Randles equivalent circuit
- Bode or Nyquist plot used for visualization
- At high frequency: $I = V/R_S$
- At mid to low frequency: $I = V/(R_S + R_{CT})$

$$Z^* = \frac{V(t)}{I(t)} = Re(Z) - j \cdot Im(Z)$$

$$I(t) = V(t) \frac{1 + (\omega RC)^2}{R - j\omega R^2 C}$$

 $\omega = 2\pi f$ where f: excitation freq.

 R_S : electrolyte resistance C_{dl} : double — layer capacitance

 R_{ct} : charge — transfer resistance

 Z_W : Warburg element

 $R_S = 20 \Omega$, $C_{dl} = 25 \mu F$, $R_{ct} = 100 \Omega$, $A_W = 300 \Omega \cdot s^{-0.5}$

PIEZOELECTRIC SENSORS

- Electromechanical sensors
- Piezoelectric effect:
 - deformation ⇔ electric field

$$S = dE$$

 $D = dT$

- Where:
 - S: strain
 - *d*: *piezoelectric coeff*.
 - E: electric field $\left[\frac{V}{m}\right]$
 - *D*: linear displacement [m]
 - $T: stress [N/m^2]$

<u>This Photo</u> by Unknown Author is licensed under CC BY-SA

This Photo by Unknown Author is licensed under CC BY-SA

CANTILEVERS

- Typically microcantilevers
- Beam displacement x < -> Applied force F_x and beam length l

$$\Delta x = \frac{l^3}{3E_m I_m} F_x$$

$$F_x = k_m \Delta x$$

- Where:
 - E_m : Young's modulus $\left[\frac{N}{m^2}\right]$
 - I_m : second moment of inertia $[kg/m^2]$
 - F_{x} : Force [N]
 - *l*: *length* [*m*]
 - k_m : spring constant $\left[\frac{N}{m}\right]$

CANTILEVERS

- Typically microcantilevers
- Beam displacement x < -> Applied force F_x and beam length l

$$\Delta x = \frac{l^3}{3E_m I_m} F_x$$

$$F_x = k_m \Delta x$$

- Means to convert mechanical to electrical:
 - Strain gauge (resistance <-> force)
 - Optical (diffraction <-> force)
 - Piezoelectric

THERMOCOUPLE

- Based on the Seebeck effect:
- Temperature difference at a junction of dissimilar conductors creates an electric potential difference:

$$\Delta V = \alpha_S \Delta T$$

- ΔV: electrical voltage [V]
- α_S : Seebeck coefficient $\left[\frac{V}{K}\right]$
- ΔT : temperature difference

WHAT WE'VE COVERED IN THIS LECTURE

Detection method	Example	Measured response to analyte concentration	Pros	Cons
Optical	Spectrophotometry	Optical intensity change	No electrical interference, contactless	Slow response, complex instrumentation
Electrical	Cyclic voltammetry	Current change in response to voltage input	Highly sensitive and compact, simple fabrication	Sensitive to noise
Mechanical	Cantilevers	Beam deflection (analyte mass is detected)	Highly sensitive and compact	Complex fabrication, sensitive to vibrations

- Different types of sensors: EM, Mechanical, Chemical
- Detection mechanisms
- Working principles

IEE1860 BIOMEMS

Contact: tamas.pardy@taltech.ee

BIOMEMS

