Microservices

Pain & Gain

Helmes

800+ 40m 28+

experts annual turnover yedars

Tallinn Minsk, Brest San Diego

Estonia (HQ) Belarus USA

RN

Monolith

Helmes

Intro into monoliths

The most simple architecture cmp Monolith /
Front-end can be separate or built-in ul

Scaleable by adding more instances

The best solution for simple projects

=)

Often the best first architecture %
=5

kend

Helmes

Monoliths - gain

+ FEasyto
« develop
+ test
« deploy

+ scale

Helmes

Monoliths - pain

Difficult to understand (the codebase)
Slow IDE

Slow web container

Hard to do ClI

Scaling the application is not efficient
Scaling the development is hard

“Married” to initial framework

Helmes

Monoliths - gain from experience

Having tools and helper classes, like validation rules, available for the entire
system
Effortless to kick-start a project

- System-wide refactoring is easy using IDEs

Debugging errors is easy - step the entire flow

Helmes

Monoliths - pain from experience

Deployment time
« Start-up time
Original encapsulation is breached creating unwanted dependencies
Increased complexity for the developer
Effect of the change

Broken windows theory manifestation

Helmes

RN

Microservices

Helmes

Intro iInto microservices

The most complex architecture
Scaleable by adding services that need to be scaled
The front-end can be a monolith or composed of stand-alone micro-frontends

There are only specific use cases when you really need this approach

Helmes

ul 2]
APigateway &)
ModieA $) ModileB) ModileN 3]

The 8 fallacies of distributed computing

- The network is reliable.
Latency is zero.
Bandwidth is infinite.

- The network is secure.

- Topology doesn't change.

- There is one administrator.

- Transport cost is zero.

- The network is homogeneous.

Helmes

Frameworks

Spring Cloud
Netflix stack
Zuul

NETFLIX Oss

Eureka

Archaius

Hystrix

Ribbon
Consul

GCP, AWS, Azure, Cloud Foundry / Serverless etc.

zerotodocker

Helmes

Microservices - gain

(the codebase) is easy to understand
Fast IDE

Fast web container

Easy to do CI

Scaling the application is efficient
Scaling the development is easy
Improved separation of concerns

Easy(er) to change underlying frameworks

Helmes

Bump poi from 3.17 to 5.2.1 #3

Q) Conversation 1

a dependabot

Bumps poi from 3.17 t0 5.2.1.

+ It's hard to do system wide/multiple services

& compatibility (Gl

. Q
d evelo pment/ refaCtorI ng Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by

commenting ‘@dependabot rebase .

+ testing
o dep|oyments » Dependabot commands and options
* inter-service communication mechanisms overhead o (@ dependabot
« accept partial failures o @:
+ increased memory consumption LY [N R p— s

« operations overhead
+ keeping versions up-to-date (use bots) e
Build successful 4, adding merge label!

« vendor lock for cloud-native approach

D)) Shmarkus added the

=) & probot-auto-merge bot merged commit 166f1d7 int

I I e I m e S ¥ & probot-auto-merge

Microservices - gain from experience

Isolation of change / Single responsibility
« Testability of the change

Fast builds
« Small downtime on deployment

Release faster with smaller changes

Helmes

Microservices - pain from experience

Refactoring something that's beyond single module
Configuration management
Debugging problems
Inter-service communication
+ Added complexity with additional middleware
« The distributed monolith problem

(System) design is utmost important

Helmes

RN

Transformation

Helmes

Intro into the transformation

It's a rare opportunity to start with a microservice project from scratch
More and more monoliths are split into microservices
This is a normal step in the application evolution

the sooner this transformation is initiated, the better

Helmes

An example from retail chain

Started with MVP, 2 weeks (JHipster monolith application)

Ideas changed, a new monolith system was introduced

Scope got larger and new independent services were planned so the existing monolith
was generated as a microservice project. The second monolith was refactored to be a
microservice in the main project.

Lots of boilerplate code generation helped a lot (OpenAPI + JHipster)

Helmes

An example from government backoffice

6 years old monolith refactoring project

Consisted of 6 separate domains that were seemingly not related

Overuse of ORM functionalities tangled the whole bundle together

The transformation phase is hard, since for some time you have the worst of both worlds

When transforming older applications, the underlying frameworks usually need upgrading as well

which adds another problem to the mix

Helmes

An example from legendary SKAIS2

Started in 2014 as a monolith application

Constant merge conflicts between different teams due to same codebase

Codebase got very fast very big and complex

~2017 refactoring to services

Extraction of supporting modules such as authentication, person, parameter, common
and x-road using the strangler pattern

Adding new services independent of the monolith

Migrating from REST services to MQ based communication

Helmes

Key takeaways

There's no silver bullet

Don't start with microservices “just because”

Get to know helping tools and frameworks like log aggregation, distributed tracing, service discovery and central configuration
Make constant design decisions, avoid distributed monolith

Understand whether the client is ready for the operations overhead/server overhead

Helmes

Q/A + discussion

Helmes

Useful links

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

https://ably.com/blog/8-fallacies-of-distributed-computing

https://microservices.io/patterns/microservices.html

https://micro-frontends.org
https://netflix.qithub.io/

https:/www.serverless.com/

Helmes

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://ably.com/blog/8-fallacies-of-distributed-computing
https://microservices.io/patterns/microservices.html
https://micro-frontends.org/
https://netflix.github.io/
https://www.serverless.com/

