
Microservices
Pain & Gain





Monolith



Intro into monoliths
• The most simple architecture

• Front-end can be separate or built-in

• Scaleable by adding more instances

• Often the best first architecture

• The best solution for simple projects



Monoliths - gain
• Easy to

• develop

• test

• deploy

• scale



Monoliths - pain
• Difficult to understand (the codebase)

• Slow IDE

• Slow web container

• Hard to do CI

• Scaling the application is not efficient

• Scaling the development is hard

• “Married” to initial framework



Monoliths - gain from experience
• Having tools and helper classes, like validation rules, available for the entire 

system

• Effortless to kick-start a project

• System-wide refactoring is easy using IDEs

• Debugging errors is easy - step the entire flow



Monoliths - pain from experience
• Deployment time

• Start-up time

• Original encapsulation is breached creating unwanted dependencies

• Increased complexity for the developer

• Effect of the change

• Broken windows theory manifestation



Microservices



Intro into microservices
• The most complex architecture

• Scaleable by adding services that need to be scaled

• The front-end can be a monolith or composed of stand-alone micro-frontends

• There are only specific use cases when you really need this approach



The 8 fallacies of distributed computing
• The network is reliable.

• Latency is zero.

• Bandwidth is infinite.

• The network is secure.

• Topology doesn't change.

• There is one administrator.

• Transport cost is zero.

• The network is homogeneous.



Frameworks
• Spring Cloud

• Netflix stack

• Zuul

• Eureka

• Archaius

• Hystrix

• Ribbon

• Consul

• GCP, AWS, Azure, Cloud Foundry / Serverless etc.



Microservices - gain
• (the codebase) is easy to understand

• Fast IDE

• Fast web container

• Easy to do CI

• Scaling the application is efficient

• Scaling the development is easy

• Improved separation of concerns

• Easy(er) to change underlying frameworks



Microservices - pain
• It’s hard to do system wide/multiple services

• development/refactoring

• testing

• deployments

• inter-service communication mechanisms overhead

• accept partial failures

• increased memory consumption

• operations overhead

• keeping versions up-to-date (use bots)

• vendor lock for cloud-native approach



Microservices - gain from experience
• Isolation of change / Single responsibility

• Testability of the change

• Fast builds

• Small downtime on deployment

• Release faster with smaller changes



Microservices - pain from experience
• Refactoring something that’s beyond single module

• Configuration management

• Debugging problems

• Inter-service communication

• Added complexity with additional middleware

• The distributed monolith problem

• (System) design is utmost important



Transformation



Intro into the transformation
• It’s a rare opportunity to start with a microservice project from scratch 

• More and more monoliths are split into microservices

• This is a normal step in the application evolution

• the sooner this transformation is initiated, the better



An example from retail chain
• Started with MVP, 2 weeks (JHipster monolith application)

• Ideas changed, a new monolith system was introduced

• Scope got larger and new independent services were planned so the existing monolith 

was generated as a microservice project. The second monolith was refactored to be a 

microservice in the main project.

• Lots of boilerplate code generation helped a lot (OpenAPI + JHipster)



An example from government backoffice
• 6 years old monolith refactoring project

• Consisted of 6 separate domains that were seemingly not related

• Overuse of ORM functionalities tangled the whole bundle together

• The transformation phase is hard, since for some time you have the worst of both worlds

• When transforming older applications, the underlying frameworks usually need upgrading as well 

which adds another problem to the mix



An example from legendary SKAIS2
• Started in 2014 as a monolith application

• Constant merge conflicts between different teams due to same codebase

• Codebase got very fast very big and complex

• ~2017 refactoring to services

• Extraction of supporting modules such as authentication, person, parameter, common 

and x-road using the strangler pattern

• Adding new services independent of the monolith

• Migrating from REST services to MQ based communication



Key takeaways
• There’s no silver bullet

• Don’t start with microservices “just because”

• Get to know helping tools and frameworks like log aggregation, distributed tracing, service discovery and central configuration

• Make constant design decisions, avoid distributed monolith

• Understand whether the client is ready for the operations overhead/server overhead



Q/A + discussion



Useful links
• https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

• https://ably.com/blog/8-fallacies-of-distributed-computing

• https://microservices.io/patterns/microservices.html

• https://micro-frontends.org

• https://netflix.github.io/

• https://www.serverless.com/

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://ably.com/blog/8-fallacies-of-distributed-computing
https://microservices.io/patterns/microservices.html
https://micro-frontends.org/
https://netflix.github.io/
https://www.serverless.com/

