
2 Partial derivatives

2.1 Partial derivatives

Fix in the domain of the function of two variables z = f(x, y) one point
P (x, y). Holding y constant and increasing the variable x by ∆x we have the
increment of the function f(x, y)

∆xz = f(x+ ∆x, y)− f(x, y)

.
De�nition 1. If there exists the limit

∂z

∂x
= lim

∆x→0

∆xz

∆x
= lim

∆x→0

f(x+ ∆x, y)− f(x, y)

∆x
(2.1)

then this limit is called the partial derivative of the function f(x, y) with
respect to the variable x at the point (x, y).

The partial derivative with respect to x is denoted also z′x, f
′
x(x, y),

∂f

∂x
.

Holding x constant and increasing the variable y by ∆y we have the
increment of the function f(x, y) as ∆yz = f(x, y + ∆y)− f(x, y).

De�nition 2. If there exists the limit

∂z

∂y
= lim

∆y→0

∆yz

∆y
= lim

∆y→0

f(x, y + ∆y)− f(x, y)

∆y
(2.2)

then this limit is called f(x, y) the partial derivative of the function f(x, y)
with respect to the variable y at the point (x, y).

The possible alternate notations for partial derivatives with respect to y

are z′y, f
′
y(x, y),

∂f

∂y
.

If we �nd the partial derivative with respect to the variable x the variable
y is treated as constant. The only variable in De�nition 1 is ∆x. As well,
�nding the partial derivative with respect to the variable y the variable x
is treated as constant. The only variable in De�nition 2 is ∆y. We need to
pay very close attention to which variable we are di�erentiating with respect
to. This is important because we are going to treat the other variable as
constant and then proceed with the derivative as if it was a function of a
single variable. Consequently, all the rules of di�erentiation of functions of
one variable hold if we �nd the partial derivatives.

Example 1. Find the partial derivatives with respect to both variables
for the function z = x3y − x2y2.
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Finding the partial derivative with respect to x, y is treated as constant.
Thus, by the di�erence rule an constant rule we obtain

∂z

∂x
=

∂

∂x
(x3y)− ∂

∂x
(x2y2) = y

∂

∂x
(x3)−y2 ∂

∂x
(x2) = y·3x2−y2·2x = 3x2y−2xy2.

Finding the partial derivative with respect to y, x is treated as constant.
By the rules of di�erentiation

∂z

∂y
=

∂

∂y
(x3y)− ∂

∂y
(x2y2) = x3 ∂

∂y
(y)− x2 ∂

∂y
(y2) = x3− x2 · 2y = x3− 2x2y

The chain rule is also still valid.
Example 2. Find the partial derivatives with respect to both variables

for the function z = arctan
x

y
.

The partial derivative with respect to x is

∂z

∂x
=

1

1 +

(
x

y

)2 ·
∂z

∂x

(
x

y

)
=

y2

y2 + x2
· 1

y

∂

∂x
(x) =

y

x2 + y2

The partial derivative with respect to y is

∂z

∂y
=

1

1 +

(
x

y

)2 ·
∂z

∂y

(
x

y

)
=

y2

y2 + x2
· x ∂
∂y

(
1

y

)

=
y2

x2 + y2
·
(
− x

y2

)
= − x

x2 + y2

The partial derivatives of the function of three variables w = f(x, y, z)
with respect to variables x, y and z are de�ned as the limits

∂w

∂x
= lim

∆x→0

∆xw

∆x
= lim

∆x→0

f(x+ ∆x, y, z)− f(x, y, z)

∆x

∂w

∂y
= lim

∆y→0

∆yw

∆y
= lim

∆y→0

f(x, y + ∆y, z)− f(x, y, z)

∆y

and
∂w

∂z
= lim

∆z→0

∆zw

∆z
= lim

∆z→0

f(x, y, z + ∆z)− f(x, y, z)

∆z

If we �nd the partial derivative with respect to one independent variable,
the other independent variables are treated as constants.
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Example 3. Find the partial derivatives with respect to all three inde-
pendent variables for the function w = xy

z
.

Finding the partial derivative with respect to x, we have the power func-
tion with constant exponent yz, therefore,

∂w

∂x
= yzxy

z−1

To �nd the partial derivative with respect to y we use the chain rule. The
outside function is the exponential function with constant base x and the
variable exponent yz, which is the power function with respect to y. By the
chain rule

∂w

∂y
= xy

z

lnx · zyz−1

To �nd the partial derivative with respect to z we use the chain rule
again. The outside function is the exponential function with constant base
x. The inside function is another exponential function yz with the constant
base y. Thus

∂w

∂z
= xy

z

lnx · yz ln y

2.2 Total increment and total di�erential

Let us �x one point P (x, y) in the domain of function z = f(x, y). As-
sume that the function f(x, y) is continuous and has the continuous partial

derivatives
∂f

∂x
and

∂f

∂y
at the point P (x, y) and in some neighborhood of this

point.
It is possible to prove that total increment

∆z = f(x+ ∆x, y + ∆y)− f(x, y)

can be represented as

∆z =
∂f

∂x
∆x+

∂f

∂y
∆y + ε1∆x+ ε2∆y (2.3)

where ε1 and ε2 are two in�nitesimals as (∆x; ∆y)→ (0; 0) i.e.

lim
(∆x;∆y)→(0;0)

ε1 = lim
(∆x;∆y)→(0;0)

ε2 = 0

In subsection 1.4 we have used the notation ∆ρ =
√

∆x2 + ∆y2. The
conditions ∣∣∣∣∆x∆ρ

∣∣∣∣ ≤ 1
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and ∣∣∣∣∆y∆ρ

∣∣∣∣ ≤ 1

mean that these are the bounded quantities. Thus, ε1
∆x

∆ρ
and ε2

∆y

∆ρ
are

in�nitesimals as the products of the in�nitesimals and a bounded quantities.
Thus, the limit

lim
∆ρ→0

ε1∆x+ ε2∆y

∆ρ
= lim

∆ρ→0
ε1

∆x

∆ρ
+ lim

∆ρ→0
ε2

∆y

∆ρ
= 0

which means that ε1∆x + ε2∆y is an in�nitesimal of the higher order with
respect to ∆ρ, i.e. with respect to ∆x and ∆y.

After that in the representation (2.3)
∂f

∂x
and

∂f

∂y
are the values of partial

derivatives at the �xed point P i.e. the real numbers. Hence, the �rst sum

∂f

∂x
∆x+

∂f

∂y
∆y (2.4)

is linear with respect to ∆x and ∆y.
De�nition. The linear part (2.4) of the total increment (2.3) is called

the total di�erential of the function z = f(x, y) and denoted by dz.
According to the de�nition

dz =
∂z

∂x
∆x+

∂z

∂y
∆y

For the function z = x the partial derivatives
∂z

∂x
= 1,

∂z

∂y
= 0 and

dz = dx = ∆x.

For the function z = y the partial derivatives
∂z

∂x
= 0,

∂z

∂y
= 1 and

dz = dy = ∆y.
Consequently for the independent variables x and y the notions of di�e-

rential and increment coincide and the total di�erential can be re-written
as

dz =
∂z

∂x
dx+

∂z

∂y
dy. (2.5)

Example 1. Find the total di�erential for the function z = arctan
x

y
.

Using the partial derivatives found in Example 2 of subsection 1.5, we obtain

dz =
y

x2 + y2
dx− x

x2 + y2
dy =

ydx− xdy
x2 + y2
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Example 2. Evaluate the total increment and the total di�erential for
the function z =

√
x2 + y2, if x = 3, y = 4, ∆x = 0, 2 and ∆y = 0, 1.

By the formula of the total increment of the function we get

∆z =
√

3, 22 + 4, 12 −
√

32 + 44 =
√

27, 05−
√

25 = 0, 20096

To evaluate the total di�erential we �nd

∂z

∂x
=

1

2
√
x2 + y2

· 2x =
x√

x2 + y2

and
∂z

∂y
=

y√
x2 + y2

Then

dz =
3√

32 + 42
· 0, 2 +

4√
32 + 42

· 0, 1 =
0, 6

5
+

0, 4

5
= 0, 2

We see that the di�erence between the total increment and the total
di�erential is less than 0, 001, which is less by two orders of values with
respect to ∆x and ∆y.

The last fact gives us the possibility to compute the approximate va-
lues of functions of two variables using the total di�erential. If ∆x and ∆y
are su�ciently small, then ∆z and dz di�er by the quantity, which is the
in�nitesimal of a higher order with respect to ∆x and ∆y. We can write

∆z ≈ dz

or

f(x+ ∆x, y + ∆y)− f(x, y) ≈ ∂z

∂x
dx+

∂z

∂y
dy

This gives us the formula of approximate computation

f(x+ ∆x, y + ∆y) ≈ f(x, y) +
∂f

∂x
∆x+

∂f

∂y
∆y (2.6)

Example 3. Using the total di�erential, compute 2, 033 · 0, 962.
Here we choose the function f(x, y) = x3y2 and the values x = 2, y = 1,

∆x = 0, 03 and ∆y = −0, 04. The partial derivatives are

∂f

∂x
= 3x2y2
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and
∂f

∂y
= 2x3y

The value of the function at the point chosen f(2, 1) = 8 · 1 = 8 and the

values of partial derivatives are
∂f

∂x
= 3 · 4 · 1 = 12 and

∂f

∂y
= 2 · 8 · 1 = 16.

By the formula (2.9)

(2 + 0, 03)3 · (1− 0, 04)2 = 8 + 12 · 0, 03− 16 · 0, 04 = 7, 72

Suppose that the function of three variables w = f(x, y, z) and the par-

tial derivatives
∂w

∂x
,
∂w

∂y
and

∂w

∂z
are continuous at the point P (x, y, z) and

in some neighborhood of this point. Analogously to the formula (2.3) it is
possible to prove that the total increment of the function can be expressed
as

∆w =
∂w

∂x
∆x+

∂w

∂y
∆y +

∂w

∂z
∆z + α∆x+ β∆y + γ∆z, (2.7)

where α∆x + β∆y + γ∆z is an in�nitesimal of a higher order with respect
to ∆ρ =

√
∆x2 + ∆y2 + ∆z2. The expression

dw =
∂w

∂x
dx+

∂w

∂y
dy +

∂w

∂z
dz (2.8)

is called the total di�erential of the function w = f(x, y, z). Again, for the
independent variables x, y and z the notions of the increment and di�erential
coincide, i.e. dx = ∆x, dy = ∆y and dz = ∆z.

Example 4. Find the total di�erential for the function w = xy
z
.

Using the partial derivatives found in Example 3 of subsection 1.5, we
obtain

dw = yzxy
z−1dx+ xy

z

lnx · zyz−1dy + xy
z

lnx · yz ln y =

= yzxy
z

(
dx

x
+
z lnxdy

y
+ lnx ln y

)
As well as for the function of two variables there holds the formula of

approximate computation

f(x+ ∆x, y + ∆y, z + ∆z) ≈ f(x, y, z) +
∂f

∂x
∆x+

∂f

∂y
∆y +

∂f

∂z
∆z (2.9)
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2.3 Partial derivatives of implicit function

Consider the function
F (x, y) = 0 (2.10)

given implicitly. This equation determines the variable y as the function of
x (in general case not one-valued).

Suppose that the function F (x, y) is continuous and it has the continuous
partial derivatives at the point P (x, y) and in some neighborhood of this
point. In addition suppose that at P (x, y) the partial derivative F ′y(x, y) 6=

0. Let us deduce the formula to �nd the derivative
dy

dx
, using the partial

derivatives of the function F (x, y).
Let us �x the point P (x, y) on the graph of given function. The coordina-

tes of this point satisfy the equation (2.10). Change x by ∆x and �nd on the
graph the value of y+ ∆y related to x+ ∆x. As Q(x+ ∆x, y+ ∆y) is a point
on the graph again, the coordinates of this point also satisfy the equation

F (x+ ∆x, y + ∆y) = 0. (2.11)

Subtracting from the equation (2.11) the equation (2.10), we obtain

F (x+ ∆x, y + ∆y)− F (x, y) = 0

The left side of the last equality is the total increment of the function F (x, y)
and the equality can be re-written

∆F = 0

Because of the assumptions made in the beginning of this subsection this
equality converts by (2.3) to

∂F

∂x
∆x+

∂F

∂y
∆y + α∆x+ β∆y = 0

which yields (
∂F

∂y
+ β

)
∆y = −

(
∂F

∂x
+ α

)
∆x
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or

∆y

∆x
= −

∂F

∂x
+ α

∂F

∂y
+ β

Find the limits of both sides of this equality as ∆x → 0. The limit of the

left side is by the de�nition of the derivative
dy

dx
. The function is continuous,

consequently if ∆x → 0 then ∆y → 0. Knowing that α and β are the
in�nitesimals as (∆x,∆y) → (0; 0), that is lim

∆x→0
α = 0 and lim

∆x→0
β = 0, the

limit of the right side of the equality is

−

∂F

∂x
∂F

∂y

Thus, to �nd the derivative of the function given implicitly we have the
formula

dy

dx
= −F

′
x

F ′y
(2.12)

Example 1. Find
dy

dx
for x4 + y4 − a2x2y2 = 0.

Here F (x, y) = x4 + y4 − a2x2y2, so F ′x = 4x3 − 2a2xy2 and F ′y = 4y3 −
2a2x2y. By the formula (2.12)

dy

dx
= −4x3 − 2a2xy2

4y3 − 2a2x2y
= −x(2x2 − a2y2)

y(2y2 − a2x2)
.

The equation F (x, y, z) = 0 relates to pairs of (x, y) some value(s) of
the variable z. In other words, this equation de�nes z as a function of x
and y. Assume that the function F (x, y, z) is continuous and has the con-

tinuous partial derivatives
∂F

∂x
,
∂F

∂y
and

∂F

∂z
at the point P (x, y, z) and in

some neighborhood of this point. Moreover assume that F ′z(x, y, z) 6= 0 at
P (x, y, z).

If we �nd the partial derivative of the function z with respect to x the
variable y is treated as constant. In this case in the equation F (x, y, z) = 0
there are only two variables x and z and by (2.12) we obtain

∂z

∂x
= −F

′
x

F ′z
(2.13)
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If we repeat this reasoning for y we have

∂z

∂y
= −

F ′y
F ′z

(2.14)

Example 2. Find the partial derivatives
∂z

∂x
and

∂z

∂y
for the function of

two variables x2 + y2 + z2 = r2 given implicitly.
As F ′x = 2x, F ′y = 2y and F ′z = 2z we obtain by the formula (2.13) the

partial derivative
∂z

∂x
= −x

z

and by the formula (2.14) the partial derivative

∂z

∂y
= −y

z

2.4 Partial derivatives of composite functions

Suppose that the variable z is a function of two variables u and v, denote
z = f(u, v), and u and v are the functions of two independent variables x
and y, denote u = ϕ(x, y) and v = ψ(x, y). Then z is a composite function
with respect to x and y, i.e.

z = f(ϕ(x, y), ψ(x, y)) = F (x, y)

Let us �x a point P (x, y) in the common domain of the functions u =
ϕ(x, y) and v = ψ(x, y). Then the related point (u, v) in the (u, v)-plane
is also �xed. Suppose that the functions u and v are continuous and have

the continuous partial derivatives
∂u

∂x
,
∂u

∂y
,
∂v

∂x
and

∂v

∂y
at the point P (x, y)

and in some neighborhood of this point. Also assume that the function z

is continuous and has the continuous partial derivatives
∂z

∂u
and

∂z

∂v
at the

related point (u, v) and in some neighborhood of this point.
The partial derivative of the composite function z = F (x, y) with respect

to x will be found by the formula

∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
(2.15)

The partial derivative of the composite function z with respect to the
variable y will be found by

∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
(2.16)
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Example 1. Find
∂z

∂x
and

∂z

∂y
for z = ln(u2+v), u = ex+y2 and v = x2+y.

According to the formulas (2.15) and (2.16) we have to �nd six partial
derivatives

∂z

∂u
=

2u

u2 + v
,

∂z

∂v
=

1

u2 + v
;

∂u

∂x
= ex+y2 ,

∂u

∂y
= 2yex+y2 ;

∂v

∂x
= 2x,

∂v

∂y
= 1;

By (2.15) we have

∂z

∂x
=

2u

u2 + v
ex+y2 +

1

u2 + v
2x =

2

u2 + v
(uex+y2 + x)

and by (2.16)

∂z

∂y
=

2u

u2 + v
2yex+y2 +

1

u2 + v
=

1

u2 + v
(4uyex+y2 + 1)

Remark. If z is a function of three variables z = f(u, v, w) and in addition
to the u and v there is w = χ(x, y), then the partial derivatives of the
composite function z with respect to the variables x and y can be found by
the formulas

∂z

∂x
=
∂z

∂u

∂u

∂x
+
∂z

∂v

∂v

∂x
+
∂z

∂w

∂w

∂x
(2.17)

and
∂z

∂y
=
∂z

∂u

∂u

∂y
+
∂z

∂v

∂v

∂y
+
∂z

∂w

∂w

∂y
(2.18)

Next, let z be a function of three variables x, u and v z = f(x, u, v),
where u = ϕ(x) and v = ψ(x). In this case z is a composite function of one
variable x

z = f(x, ϕ(x), ψ(x))

The derivative of that function
dz

dx
we obtain using (2.17). As the derivative

dx

dx
= 1 and u and v are the functions of one variable, then

dz

dx
=
∂z

∂x
+
∂z

∂u

du

dx
+
∂z

∂v

dv

dx
. (2.19)

The derivative in (2.19) is called the total derivative.
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Example 2. Find
dz

dx
for z = x2 +

√
y and y = x2 + 1.

Here z is the function of two variables x and y, where y is the function of
the variable x. In this case the formula (2.19) gives

dz

dx
=
∂z

∂x
+
∂z

∂y

dy

dx
= 2x+

1

2
√
y
· 2x = x

(
2 +

1
√
y

)
= x

(
2 +

1√
x2 + 1

)
.

2.5 Higher order partial derivatives

As we have seen in many examples, the partial derivatives of the function

z = f(x, y)
∂z

∂x
and

∂z

∂y
are in general functions of two variables again. Thus,

it is possible to di�erentiate both of them with respect to x and y.
De�nition 1. The partial derivative with respect to x of the partial

derivative
∂z

∂x
is called the second order partial derivative with respect to x

and denoted
∂2z

∂x2
(to be read de-squared-zed de-ex-squared), that means

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
De�nition 2. The partial derivative with respect to y of the partial

derivative
∂z

∂x
is called the second order partial derivative with respect to x

and y and denoted
∂2z

∂x∂y
(to be read de-squared-zed de-ex-de-y). By this

de�nition
∂2z

∂x∂y
=

∂

∂y

(
∂z

∂x

)
De�nition 3. The partial derivative with respect to x of the partial

derivative
∂z

∂y
is called the second order partial derivative with respect to y

and x and denoted
∂2z

∂y∂x
, that is

∂2z

∂y∂x
=

∂

∂x

(
∂z

∂y

)
De�nition 4. The partial derivative with respect to y of the partial

derivative
∂z

∂y
is called the second order partial derivative with respect to y
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and denoted
∂2z

∂y2
, i.e

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
The second and third second order partial derivatives are often called

mixed partial derivatives since we are taking derivatives with respect to more
than one variable.

The second order partial derivatives are denoted also z′′xx, z
′′
xy, z

′′
yx and z

′′
yy

or f ′′xx(x, y), f ′′xy(x, y), f ′′yx(x, y) and f ′′yy(x, y).
The second order partial derivatives are the functions of two variables

x and y again. Hence, all four second order partial derivatives can be di�e-
rentiated with respect to x and y. So we de�ne eight third order partial
derivatives

∂3z

∂x3
=

∂

∂x

(
∂2z

∂x2

)
,

∂3z

∂x2∂y
=

∂

∂y

(
∂2z

∂x2

)
∂3z

∂x∂y∂x
=

∂

∂x

(
∂2z

∂x∂y

)
,

∂3z

∂x∂y2
=

∂

∂y

(
∂2z

∂x∂y

)
∂3z

∂y∂x2
=

∂

∂x

(
∂2z

∂y∂x

)
,

∂3z

∂y∂x∂y
=

∂

∂y

(
∂2z

∂y∂x

)
∂3z

∂y2∂x
=

∂

∂x

(
∂2z

∂y2

)
,
∂3z

∂y3
=

∂

∂y

(
∂2z

∂y2

)
Example 1. Find all second order partial derivatives for z = arctan

x

y
.

In Example 2 of subsection 6.5 we have found

∂z

∂x
=

y

x2 + y2
and

∂z

∂y
= − x

x2 + y2

We �nd

∂2z

∂x2
=

∂

∂x

(
y

x2 + y2

)
= y

∂

∂x

(
1

x2 + y2

)
= y

(
− 2x

(x2 + y2)2

)
= − 2xy

(x2 + y2)2

∂2z

∂x∂y
=

∂

∂y

(
y

x2 + y2

)
=
x2 + y2 − y · 2y

(x2 + y2)2
=

x2 − y2

(x2 + y2)2

∂2z

∂y∂x
=

∂

∂x

(
− x

x2 + y2

)
= −x

2 + y2 − x · 2x
(x2 + y2)2

=
x2 − y2

(x2 + y2)2

∂2z

∂y2
=

∂

∂y

(
− x

x2 + y2

)
= −x ∂

∂y

(
1

x2 + y2

)
= −x

(
− 2y

(x2 + y2)2

)
=

2xy

(x2 + y2)2
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These results suggest a question, are the mixed second order partial de-
rivatives

∂2z

∂x∂y
and

∂2z

∂y∂x

equal. The next theorem says that if the function is smooth enough this will
always be the case.

Theorem. If the function z = f(x, y) and its partial derivatives
∂z

∂x
,
∂z

∂y
,

∂2z

∂x∂y
and

∂2z

∂y∂x
are continuous at the point P and on some neighborhood

of this point, then at the point P

∂2z

∂x∂y
=

∂2z

∂y∂x

This theorem says that if the partial derivatives to be evaluated are conti-
nuous, then the result of repeated di�erentiation is independent of the order
in which it is performed.

Therefore, if the partial derivatives involved are continuous, the also holds

∂4z

∂x∂y∂x∂y
=

∂4z

∂x2∂y2
=

∂4z

∂y2∂x2

Analogous theorem is valid also for the functions of three etc. variables.

Example 2. Find the third order partial derivatives
∂3w

∂x∂y∂z
and

∂3w

∂z∂x∂y
for the function of three variables w = ex sin(yz).

First we �nd
∂w

∂x
= ex sin(yz)

second
∂2w

∂x∂y
= ex cos(yz) · z = zex cos(yz)

and third

∂3w

∂x∂y∂z
= ex cos(yz) + z(−ex sin(yz)) · y = ex[cos(yz)− yz sin(yz)]

To �nd the second third order partial derivative, we �nd

∂w

∂z
= yex cos(yz)

next
∂2w

∂z∂x
= yex cos(yz)

13



and �nally

∂3w

∂z∂x∂y
= ex cos(yz)− yex sin(yz) · z = ex[cos(yz)− yz sin(yz)]

2.6 Directional derivative

Up to now for the function of two variables z = f(x, y) we've only loo-

ked at the two partial derivatives
∂z

∂x
and

∂z

∂y
. Recall that these derivatives

represent the rate of change of f as we vary x (holding y �xed) and as we
vary y (holding x �xed) respectively. We now need to discuss how to �nd the
rate of change of f(x, y) if we allow both x and y to change simultaneously.
In other words how to �nd the rate of change of f(x, y) in the direction of
vector −→s = (∆x,∆y).

The goal is to obtain the formula to compute the derivative of the function
z = f(x, y) at the point P (x, y) in the direction of the vector −→s = (∆x,∆y).

Assume that the function z = f(x, y) and its partial derivatives
∂z

∂x
and

∂z

∂y
are continuous at P and in some neighborhood of this point.

Denote the length of the vector −→s by ∆s =
√

∆x2 + ∆y2. By the (2.3)
the total increment of the function has the form

∆z =
∂z

∂x
∆x+

∂z

∂y
∆y + ε1∆x+ ε2∆y

where ε1 and ε2 are in�nitesimals as ∆s → 0. Dividing the last equality by
the length of the vector −→s gives

∆z

∆s
=
∂z

∂x

∆x

∆s
+
∂z

∂y

∆y

∆s
+ ε1

∆x

∆s
+ ε2

∆y

∆s

The ratios
∆x

∆s
and

∆y

∆s
are the coordinates of the unit vector

−→
s◦ in direction

of the vector −→s . Denoting by α and β the angles that −→s forms with the
coordinate axes, it's obvious that

∆x

∆s
= cosα and

∆y

∆s
= cos β
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Therefore, these ratios, i.e. the coordinates of the unit vector in direction of
the vector −→s are called the directional cosines of that vector.

De�nition. The limit

lim
∆s→0

∆z

∆s

is called the derivative of z at the point P in the direction of the vector −→s
and denoted

∂z

∂−→s
. Since

lim
∆s→0

(
ε1

∆x

∆s
+ ε2

∆y

∆s

)
= 0

we have the formula to compute the directional derivative

∂z

∂−→s
=
∂z

∂x
cosα +

∂z

∂y
cos β (2.20)

Example 1. Find the derivatives of the function z = x2 +y2 at the point
P (1; 1) in directions of vectors −→s1 = (1; 1) and −→s2 = (1;−1).

First we evaluate the partial derivatives of z at P

∂z

∂x
= 2x

∣∣∣∣
P

= 2

and
∂z

∂y
= 2y

∣∣∣∣
P

= 2

The length of the vector −→s1 is ∆s1 =
√

2, the directional cosines are cosα =
1√
2
and cos β =

1√
2
. Hence,

∂z

∂−→s1

= 2 · 1√
2

+ 2 · 1√
2

= 2
√

2

The length of the vector −→s2 is ∆s2 =
√

2, the directional cosines are cosα =
1√
2
and cos β = − 1√

2
. Thus,

∂z

∂−→s2

= 2 · 1√
2
− 2 · 1√

2
= 0
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Starting from the same point in the xy plane and moving in di�erent
directions, we get the di�erent results. Thus, the directional derivative has
no meaning without specifying the direction. The directional derivative gives
us the instantaneous rate of change of the given function of two variables at
a certain point in the pre-scribed direction.

Partial derivatives with respect to x and y are special cases of the di-
rectional derivative. If the given vector −→s points in direction of x-axis then

α = 0, β =
π

2
, cosα = 1 and cos β = 0. Hence,

∂z

∂−→s
=
∂z

∂x

If the given vector −→s points in direction of y-axis then α =
π

2
, β = 0,

cosα = 0 and cos β = 1. It follows

∂z

∂s
=
∂z

∂y

Thus, the directional derivative in the direction of x axis is the partial
derivative with respect to x and the directional derivative in the direction of
y-axis is the partial derivative with respect to y.

The directional derivative of the function of three variables w = f(x, y, z)
at the point P (x, y, z) in the direction of the vector −→s = (∆x,∆y,∆z) can
be found by the similar formula. Let α, β and γ denote the angles between
the vector −→s and x-axis, y-axis and z-axis respectively. Then the directional
cosines of the vector −→s are cosα, cos β and cos γ. The directional derivative
is computed by the formula

∂w

∂−→s
=
∂w

∂x
cosα +

∂w

∂y
cos β +

∂w

∂z
cos γ (2.21)

Example 2. Find the directional derivative of the function w = xy +
xz+ yz at the point P (1; 1; 2) in the direction of the vector that makes with
the coordinate axes the angles 60◦, 60◦ and 45◦ respectively.

Find the partial derivatives at the point P

∂w

∂x
= y + z

∣∣∣∣
P

= 3,
∂w

∂y
= x+ z

∣∣∣∣
P

= 3

and
∂w

∂z
= x+ y

∣∣∣∣
P

= 2
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and the directional cosines

−→
s◦ = (cos 60◦; cos 60◦; cos 45◦) =

(
1

2
;
1

2
;

√
2

2

)
.

By the formula (2.21) we obtain

∂w

∂−→s
= 3 · 1

2
+ 3 · 1

2
+ 2 ·

√
2

2
= 3 +

√
2
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